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Abstract 

Planned missing data designs in large surveys can efficiently reduce respondents’ burden 

and lower the cost associated with data collection, without cutting down on the questionnaire 

items. If the missing data are not appropriately planned, it results bias in descriptive and potential 

causal parameter estimates. For a fixed sample size, the extend of bias depends on the three 

major characteristics of design and data: the missing percentage, the overlap percentage (i.e., the 

portion of the cases where two items are observed jointly), and the distributions of variables. My 

first two simulation studies investigate how the bias in marginal means, correlations and 

regression coefficients depends on the chosen planned missing data designs and the related 

characteristics.  

Even if a planned missing data design allows researchers to recover parameters of interest 

without bias, an incorrect choice of covariates at the imputation stage might actually introduce 

bias. For example, if the missing data pattern of a specific form or booklet causes context effects 

on an auxiliary variable that is used for imputing missing values, bias can be introduced. Thus, 

including all measured variables in the imputation model is not necessary a good strategy and, 

given the huge number of items in large surveys, frequently is problematic. The question then is, 

how should researchers select the imputation variables to obtain valid parameter estimates? The 

simulation studies investigate which variables not necessary or should not be included in the 

imputation model. Graphical models provide the theoretical basis for my simulations and 

explanations. 
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Abstract 

Planned missing data designs in large surveys can efficiently reduce respondents’ burden 

and lower the cost associated with data collection, without cutting down on the questionnaire 

items. If the missing data are not appropriately planned, the bias of parameter estimates results. 

This paper implemented two simulation studies to investigate the bias in the marginal means, 

correlations and regression coefficients using the planned missing data designs and multiple 

imputation of the missing data. The first study shows that for a fixed sample size, the extent of 

bias depends on the three major properties of design and data: overlap percentages, missing 

percentages, and distributions of variables. The second study applies the properties of design to 

illustrate that an optimal incomplete block design that ensures overlap can be a better choice than 

a multiple-form design. The issues and strategies of planning and imputing missing data are 

discussed. 

 
Keywords 

Planned missing data designs; large surveys; optimal incomplete block designs; multiple-form 

designs; three-form designs; missing data; multiple imputation.  
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Introduction  

Large survey data are great resources for conducting social science research. However, a 

serious constraint with large surveys is that respondents can answer only a limited number of 

questionnaire items without being overwhelmed. Moreover, with long questionnaires the validity 

and reliability of measures very likely decreases. In order to overcome these limitations, 

researchers can use designs with carefully planned missing data where respondents answer only 

subsets of questionnaire items. This reduces respondents’ burden and lowers the cost associated 

with data collection but nonetheless allows researchers to collect data on the full set of 

questionnaire items. Constructing the subsets is a big challenge because the resulting 

missingness structure in the data should not interfere with the researchers’ aim to draw valid 

descriptive and, if possible, causal conclusions. Since the structure of the planned missingness 

strongly affects parameter estimates, carefully implemented simulation studies need to be 

conducted to compare different planned missing data designs with respect to valid and reliable 

parameter estimation. If the goal is to provide data to end-users, how should planned missing 

data be handled appropriately? In addition, what kind of missing data designs allow the 

parameter estimates of interest to be recovered without bias? This paper will address these 

questions with the focus on designs with two simulation studies. 

The first simulation study investigates the optimal amount of missing data that occur in 

each variable (i.e., missing percentage) and the amount of observed data in each pair of variables 

jointly (i.e., overlap percentage) regarding the bias in the estimates of means, correlations and 

regression coefficients. To illustrate how the overlap and missing percentage apply to the 

specific designs, the second simulation study compares the two-form design, the three-form 

design, the optimal block design with 50% missingness, and the optimal block design with 33% 

missingness regarding the bias in the parameter estimates. The results show that given the same 
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amount of missing percentage, an optimal block design that ensures sufficient overlap and 

maximizes the efficiency at the same time can be a better choice than a multiple-form design that 

is frequently implemented in the psychological research. 

This paper is organized as follows. In the background section, I give an overview of the 

designs used in large surveys in sociology, psychology and education. Then, I introduce design 

properties and commonly used planned missing data designs. Followed by the missing data 

methods section, I illustrate the missingness mechanism with design examples and discuss 

modern methods for dealing with planned missing data. The following two sections describe the 

two simulation studies, including the methods and results. Finally, in the conclusion section I 

discuss the findings of the two studies, the issues and strategies of planning and imputing 

missing data. 

Background  

Carefully planned missing data designs can dramatically reduce the cost associated with 

data collection, and even increase validity due to reducing participant burden (Rhemtulla & 

Hancock, 2016). Planned missing data designs are chosen according to the characteristics of data 

in specific research fields. In sociological research, researchers frequently use factorial surveys 

(also called vignette experiments) to measure social judgments. For example, researchers 

measure the perceived income by varying the factors such as gender, education and occupation 

(Steiner et al., 2016). The factor levels are combined and formed as a vignette or a hypothetical 

scenario for respondents to assess. Due to the large number of factors and factor levels, the 

number of full factorial combinations is frequently too large for respondents to assess. Thus, 

strategies for forming smaller subsets of vignettes such as randomly sampling vignettes (Rossi & 

Nock, 1982), confounded factorial designs (Kirk, 1995), or D-optimal designs (Atkinson at al., 

2007) help to reduce respondents’ burden. However, not all of these strategies can satisfactorily 
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deal with the missing vignette assessments created by design. Randomly selecting vignettes often 

results in biased parameter estimates because some effects of interest might be randomly 

confounded (Su & Steiner, 2018; Steiner et al., 2016).  

In behavioral or psychological research, due to the financial burden associated with 

recruiting respondents, many survey questionnaires use existing survey instruments to obtain 

information that can be used for a variety of purposes. Long questionnaires inevitably increase 

respondents’ burden, which likely increases nonresponse rates. Raghunathan and Grizzle (1995) 

implemented a split questionnaire survey design in an attempt to reduce the nonresponse rate in 

the Cancer Risk Behavior Survey. Other planned missing data designs like the three-form design 

outlined by John Graham and his colleagues (Graham et al., 2006) have gained popularity in 

psychological research. The split questionnaire survey designs and three-form designs have 

similar features. The complete questionnaires are split into multiple item sets and only a 

selection of item sets is assigned to respondents.  

A common goal in large-scale educational assessments is to estimate the proficiency or 

achievement of students in different subject areas, for example in the National Assessment of 

Educational Progress (NAEP) and the Programme for International Students Assessment (PISA). 

Matrix-sampling designs (Shoemaker, 1973) and incomplete block designs (Frey et al., 2009; 

van der Linden et al., 2004) have been used to increase the number of test questions. Combined 

with a multidimensional Item Response (IRT) model, the proficiency scores of students can be 

estimated by drawing multiple plausible values from the distribution of the latent proficiency 

(Neal Thomas, 2004). Many studies have focused on item parameter estimates and proficiency 

estimates while incorporating the uncertainty due to missing data (Aßmann et al., 2015; 

Gonzalez & Rutkowski 2010; Hecht et al., 2015; Rutkowski, 2011; Weirich et al., 2014). 

Missing data designs for context questionnaires were also considered and investigated (Adams et 
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al., 2013; Kaplan & Su, 2016; authors, 2017; OECD 2014). It is worth noticing that across the 

different fields in the social sciences, only a few studies have addressed bias in the parameter 

estimates of substantive interest, while many studies focused on the efficiency or power issue of 

planed missing data designs (Graham et al., 2006; Pokropek 2011; Rhemtulla et al., 2016). 

 

Planned Missing Data Designs  

Design Properties 

In planned missing data designs, an item is an individual task that is administered to a 

respondent. In this paper, I use the terms item and variable interchangeably. A block or cluster is 

a set of items that are blocked by design. I use the term block throughout this paper. A block of 

variables that contains no planned missing data is called a common block. In a large survey, 

demographic information of respondents represents important data for analysis. For example, 

gender and race information are collected from all respondents. Blocks with planned missing 

data are called rotation blocks. The variables that are assigned to rotation blocks are referred to 

as rotation variables. A form is the actual set of blocks that is administered to examinees. A form 

can contain either multiple blocks or only one block. Typically, a form contains a common block 

and at least one rotation block.  

To systematically plan the missing data, the amount of missing data and where the 

missing data occur should be considered. The missing percentage of a single variable is the 

percentage of missing cases in this variable. If the missing percentage is 100%, the population 

means are not estimable. The overlap percentage of two variables is the percentage of 

simultaneously observed values in the two variables (relative to total number of cases). If the 

overlap percentage of two variables is 0%, correlations are not estimable, simply because of no 

data are available for estimation.  
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Figure 1 presents the examples of planned missing data in any two variables X1 and X2 of 

a survey questionnaire with n respondents. Imagine we have a dataset where rows are the 

respondents and columns are the variables. The vertical bars in Figure 1 represent the observed 

data in variable X1 or X2. Figure 1 (a) shows two full sized bars with no planned missing data in 

both X1 and X2. The missing percentage of both variables is 0%. The overlap percentage is 100%. 

This situation arises when both variables belong to the common block. In Figure 1 (b), the bar of 

X2 is half size of X1, meaning 50% of missing data are planned in X2. In this case, the overlap 

percentage between X1 and X2 is 50%, because only half of the respondents have observed data 

in both X1 and X2. Such a situation occurs when one variable (X1) comes from a common block 

and the other variable (X2) from a rotation block. Figure 1 (c) shows that both X1 and X2 have 

50% planned missing data. The overlap percentage is 50% as well. In this case the two variables 

come from the same rotation block. In Figure 1 (d), the missing percentage of X1 and X2 is 50%. 

However, the overlap percentage is 0%, since the observed data in X1 and X2 do not overlap. This 

example can represent that X1 and X2 come from the different rotation blocks. 

 

Figure 1. The scenarios of overlap between two variables in a planned missing data design. 
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(Table 1). Half of the subjects are assigned to form 1 which contains the common block X and 

rotation block A. The other half of respondents receives form 2, containing block X and B. None 

of the subjects respond to blocks A and B simultaneously. The missing percentage of the 

variables in either A or B is 50%. The overlap percentage between the variables from A and 

variables from B is 0%. Thus, with the two-form design, the correlations between variables from 

A and B are not estimable.  

 

Table 1. The two-form design. 

 Common Block Rotation Blocks 
Form X A B 

1 1 1 0 
2 1 0 1 

 

Three-form designs. To avoid the limitation of the two-form design, researchers can use 

more than two rotation blocks. In three-form designs, variables are divided into four blocks, one 

common block X and three rotation blocks A, B, and C (Table 2). One third of the respondents 

get one of the three forms, XAB, XAC, or XBC. The missing percentage of variables in the 

rotation blocks is 33%. The overlap percentage of two variables across rotation blocks (e.g., one 

from A and one from B) is 33% as well. Thus, correlations of the variables across rotation blocks 

are estimable. Researchers can apply similar ideas and extend the number of rotation blocks. The 

form always contains the common block and any two of the rotation blocks. Raghunathan and 

Grizzle (1995) implemented a split questionnaire survey design with five rotation blocks. Five 

rotation blocks result in 10 forms, since there are 10 ways (5 choose 2) to combine any of the 

two rotation blocks. However, the larger the number of rotation blocks, the larger the missing 

percentage and the smaller the overlap percentage.   
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Table 2. The three-form design. 

 Common Block Rotation Blocks 
Form X A B C 

1 1 1 1 0 
2 1 1 0 1 
3 1 0 1 1 

 

Incomplete Block Designs 

When variables are arranged into rotation blocks using efficiency criteria such as 

balancedness and optimality criteria, we call such designs balanced, partially balanced, or 

optimal incomplete block designs. Respondents are then assigned with a form consisting of one 

common block and one rotation block. In the following introduction to these designs, I focus on 

the rotation blocks only.  

Balanced incomplete block designs. A balanced incomplete block design (BIB) divides 

the variables into multiple rotation blocks. Let t denote the number of variables, k the number of 

variables in each rotation block (also referred to as block size), b the number of rotation blocks, 

and r the replication times for each variable. The design is called balanced because each pair of 

variables is replicated the same number of times (𝜆), which is also referred to as the associate 

class (Montgomery, 2012). The BIB designs satisfy the following two equations: 

bk = rt      (1) 

r(k – 1) = 𝜆 (t – 1)     (2) 

Consider a simple BIB design with four variables (t = 4) and a block size k = 3. Then, the 

above two equations hold if we choose b = 4, r = 3, and 𝜆 = 2, for instance. As Table 3 shows, 

each rotation block contains three variables. This design is balanced because each variable shows 

up with the same frequency (r = 3), and any pair of variables shows up equally often (𝜆 = 2). 
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Each block is assigned to one quarter of respondents. In this design, the missing percentage of 

each variable is (b – r) / b = 25% and the overlap percentage is 𝜆 / b = 50%.  

 
Table 3. The BIB design with four variables and four rotation blocks. 

Rotation Blocks V1 V2 V3 V4 
1 1 1 1 0 
2 1 1 0 1 
3 1 0 1 1 
4 0 1 1 1 

 

Partially balanced incomplete block designs. Although a BIB design can be 

constructed with any number of variables t and any block size k, the minimum number of blocks 

b is fixed by these two parameters (Cochran & Cox, 1957). In most cases, the number of required 

blocks b is too large to be implemented in practice. Thus, the balance criteria can be relaxed in 

order to obtain a smaller number of blocks. Instead of having one associate class 𝜆, multiple 

associate classes 𝜆", … , 𝜆% are used. Then the incomplete block design is called partially 

balanced. The fewer associate classes a PBIB design has, the closer it is to a BIB design. For a 

PBIB design, the following equations need to hold (with an integer 𝑎'): 

bk = rt      (3) 

r(k – 1) = ∑ 𝑎'𝜆'%
')"      (4) 

Consider an example with six variables (t = 6). We can for instance construct a partially 

balanced incomplete block (PBIB) design with b = 3 blocks of size k = 4 and two association 

class 𝜆"= 1 and 𝜆*= 2 (Table 4). In this design, the missing percentage of each variable is (b – r) 

/ b = 33% and the overlap percentages are 𝜆" / b = 33% and 𝜆* / b = 67%. Notice if we group 

variables V1 and V2 into block A, V3 and V4 into block B, and V3 and V4 into block C, this 
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PBIB design is the same as the rotation part of the three-form design. Another example of a 

PBIB design with 19 variables can be found in Kaplan & Su (2016). 

 

Table 4. The PBIB design with six variables and four rotation blocks. 

Rotation Blocks V1 V2 V3 V4 V5 V6 
1 1 1 1 1 0 0 
2 1 1 0 0 1 1 
3 0 0 1 1 1 1 

 

Optimal incomplete block design. With a large number of variables, finding an 

incomplete block design with maximum balance by hand is no longer an easy task. Instead a 

computer-generated-design that maximizing a specific optimality criterion can be used. Software 

packages like jmp from SAS (SAS Institute Inc., 2012) or the R function optBlock() from the 

AlgDesign package (R Core Team, 2014; Wheeler, 2014) search for an optimal incomplete block 

design. For a predefined number of variables, blocks and block size, the function optBlock() uses 

the design matrix X and searches for an incomplete block design such that the determinant of 

X’X is maximized.  The design matrix X contains all the predictors in the rotation blocks 

including main and interaction effects of interest. The “D” in D-optimality reflects the 

determinant criterion (Atkinson et al., 2007; Wu & Hamada, 2009). Maximizing the determinant 

of X’X is equivalent to minimizing the volume of the joint confidence region of all effects, that 

is, all effects captured by the design matrix X can be jointly estimated with maximum efficiency. 

Another advantage of the optimal incomplete block design is the possibility of specifying higher 

order interactions to be estimable, which is not achievable via multiple-form designs. 

The search algorithms are flexible enough to accommodate designs with any number of 

variables and block size. However, the algorithm does not automatically guarantee the minimum 

missing percentage and maximum overlap percentage. Thus, researchers should always check 
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the missing and overlap percentages for each generated design and adjust the number of blocks 

and block size to find the maximum overlap percentage. 

 

Missing Data Mechanisms and Methods  

Rubin (1976) originally defined missingness R as a random variable which has a 

probability distribution. The missingness mechanisms can be categorized as missing completely 

at random (MCAR), missing at random (MAR), and missing not at random (MNAR). The 

common belief is that with planned missing data designs MCAR or MAR is automatically met 

and thus the parameters can be recovered using multiple imputation. By reviewing the 

missingness mechanisms and methods, it is important to address that even if a planned misisng 

data design follows MCAR or MAR, the parameters are not garantteed to be recovered without 

bias.  

Missing Data Mechanisms  

Let D denote the hypothetical complete data matrix with n observations and k variables 

and D* the realized data with the missing values. D contains two sets of variables U and V, D = 

(U, V). The realized variables in U*contain missing data, and the realized variables in V* do not 

contain any missing data. Thus, D* = (U*, V*) = (U*, V). R denotes the indicator matrix of 

planned missingness with respect to D*, taking values of 1 if values in D* are observed and 0 if 

values in D* are missing. The planned missingness indicator R can have three relationships to the 

hypothetical complete data D: (1) independent of variables in U and V, (2) dependent on 

variables in V, but independent of variables in U, and (3) dependent on variables in U only, or 

dependent on variables in both U and V. Imagine D contains all the variables in a large survey. 

Variables in U belong to the rotation blocks that will be planned with missing data. Variables in 

V belong to the common block so they will not contain any missing data. 
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Missing completely at random. The missing data is missing completely at random when 

planned missingness R is independent of variables in U and V, thus independent of D (see 

equation (5)). In a planned missing data design, suppose the missing data in U are planned by 

randomly assigning only half of the items to each respondent. That is, respondents get different 

randomly sampled sets of items in U and each respondent always has missing values in half of 

the items. In this random sampling design, due to randomization, the probability of being 

observed in U is the same, which equals to 1/2 and does not depend on the distribution of U. 

Thus, the conditional probability of R given the data D is equal to the probability of missingness 

R (equation (6)).  

R ⊥ D       (5) 

    P(R | D) = P(R)       (6) 

For a multiple form design or an incomplete block design, MCAR is met when the blocks 

are randomized. Let B denotes a blocking variable that indicates which rotation block the 

variables in U belong to. In the two-form design, half of the variables in U belong to rotation 

block one (denote these variables as U1) and the other half to rotation block two (denote these 

variables as U2). One form that contains the V and U1 and the other form that contains V and U2 

are randomly assigned to respondents. Respondents who get form one will have missing data in 

U2*, and respondents who get form two will have missing data in U1*. Thus, the missing data in 

D* = (U1*, U2*, V*) is planned solely by randomizing B to respondents. The probability of being 

observed in U1*, U2* does not depend on the distribution of U1 nor U2. Each respondent has half 

chance of being assigned to form one or form two. Thus the conditional probability of being 

observed is the same as the marginal probability of being observed, P(R = 1 | U1, U2, V) = P(R = 

1) = ½. 
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Missing at random. The missing data is missing at random when missingness R only 

depends on V. After conditioning on V, R is independent of U (equation (7)). The conditional 

probability of R given U and V is equal to the conditional probability of R given V alone 

(equation (8)).  

R ⊥ U | V       (7) 

P(R | U, V) = P(R | V)      (8) 

A randomized block design follows the MAR mechanism when the blocking variable B is 

a variable in V. Consider the planned missing data designs blocked by school (the variable is 

denoted as Vschool). Within each school, each respondent gets an independent random sample of 

the items in U. However, the number of items that are assigned to each respondent is different 

across schools. For instance, students in school A are assigned with 50% items while students in 

school B get 30% items, due to the fact that students in school A can assess more items without 

getting fatigue.  Thus, the probability of an item being observed depends on schools, but does not 

vary within school, since within school all items in U have equal chance of being observed. In 

other words, the probability of being observed is the same conditioning on school Vschool, P(R = 1 

| U, Vschool) = P(R = 1 | Vschool). In this case, the missing data method or analysis procedure need 

to take into account the school variable to ensure the unbiased parameter estimates. 

Missing not at random. The missing data is missing at random when missingness R 

depends on U, both U and V, or unobserved latent variable. Accordingly, no conditional 

independence holds, meaning that the missingness mechanism is nonignorable. Consider two 

variables income Uincome and age Vage, if the missing data in U*income is due to Uincome or the 

unmeasured variables, then the missing data is MNAR. For instance, the respondents with very 

high incomes tend not to report their incomes. Or respondents have missing values in U*income 

associated with higher anxiety which is an unobserved variable.  
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MNAR occurs frequently in practice even with planned missing data designs. For 

instance, due to convenience, instead of random assignment researchers use the administrative 

procedures that end up with more complex confounding between the variables planned with 

missingness and the outcome variable. If the confounding variables are not measured, the 

missing data will be MNAR. In addition, respondents assess a set of items in a form which can 

introduce context effects. When the context effects create spurious association between the 

missingness R and variables in U, the missing mechanism becomes MNAR. Thus, planned 

missing data designs do not guarantee the missingness mechanism to be MCAR or MAR. Even if 

they do, the parameter estimates are not guaranteed to be recovered without bias. The designs 

and methods that deal with missing data need to be considered carefully in order to obtain 

unbiased estimates. 

Missing Data Methods for Planned Missing Data Designs 

With the advances in the analysis of missing data, methods like multiple imputation 

(Rubin, 1987, 1996) allow researchers to analyze data from planned missing data designs 

without having to discard incomplete cases. Modern methods such as maximum likelihood or 

full information likelihood (FIML) produce accurate parameter estimates where traditional 

approaches (e.g., pairwise deletion and listwise deletion) fail when the missing mechanism is 

MAR. Researchers can choose FIML when they use statistical packages such as sem (Fox et al., 

2014) or lavaan (Rosseel, 2012) in R (R core team, 2012) to deal with missing data. The 

procedure integrates missing data handling into the estimation process and no missing data are 

filled in. However, maximum likelihood is not flexible enough for researchers who want to use 

complete data sets for further data manipulation or analysis. For instance, when large survey data 

have item-level missing data but the analysis is conducted on the scale level, the process of 
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handling item-level missing data and the analysis cannot be treated separately using maximum 

likelihood method.   

Research by Graham et al., (1996), Graham et al., (2006), and  Rughunathan,(1995) has 

shown that multiple imputation performs well in imputing planned missing data of the cases 

studied. Multiple imputation is more flexible in dealing with planned missing data in large 

surveys. Since the imputation phase is separated from the analysis phase, researchers can use 

additional auxiliary variables in the imputation phase to impute missing data. Once the complete 

data sets are obtained, researchers can use a different set of variables for the analysis. Multiple 

imputation is easy to implement for large survey data with different types of data distributions. 

The approach that specifies the multivariate model by a series of conditional models, one for 

each incomplete variable, is called fully conditional specification approach (van Buuren, 2007). 

This approach is implemented in the mice package (van Buuren & Groothuis-Oudshoorn, 2010) 

in R. Researchers can choose the imputation method based on the types of variables, for 

example, Bayesian linear regression (norm) for normally distributed continuous variables, 

logistic regression (logreg) for categorical variables with two levels, and polytomous logistic 

regression (polyreg) for categorical variables with more than two levels. Other options such as 

data mining methods (e.g., random forest) or methods for multilevel data (Carpenter & Kenward, 

2006) are available as well. Predictive mean matching (pmm) (Little, 1988) has shown good 

performance in imputing large-scale educational assessment data (Kaplan & Su, 2016). In 

addition to standard multiple imputation, a summary of adaptations of multiple imputation for 

large survey data can be found in Reiter & Raghunathan (2007). An adaptation that is applied in 

large-scale educational assessment is the nested multiple imputation (or two-stage multiple 

imputation, Rubin, 2003). Researchers use nested multiple imputations to combine the 
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imputation of plausible values and the missing data from the context questionnaire (Aßmann et 

al., 2015; Weirich et al., 2014).  

The common belief is that multiple imputations can recover any parameter estimates 

from planned missing data designs when the missing mechanism is either MCAR or MAR. 

However, studies have shown (Kaplan & Su, 2016; authors, 2017) that the bias of the parameter 

estimates differ across planned missing data designs, especially for the estimates of correlation 

and regression coefficient. Consider the two-form designs which result in zero overlap between 

the rotation variables from the first form and the second form. Even though the software program 

(e.g., mice package in R) delivers the imputed data, the estimates of correlations between the 

rotation variables that have no overlap will be biased. Thus, the choice of planned missing data 

designs needs to be carefully considered depending on the parameter of interest. 

Even if the designs ensure that the parameters are recoverable without bias, in practice 

there are likely other types of missing data which might induce bias. For instance, in addition to 

the missing data by design, other item-level nonresponses frequently appear. To use multiple 

imputation, the missingness mechanism of these item-level nonresponses should be ignorable. 

Furthermore, unit nonresponse (i.e., no single measure for a sampled respondent has been 

recorded.) might occur. In this case, methods like weighting adjustment can be applied (Kalton 

& Kasprzyk, 1986). Though multiple imputation has become an easy-to-use method for imputing 

planned missing data, many other issues such as choosing appropriate auxiliary variables in the 

imputation model should be considered carefully as well.  

 

Study 1 

Methods 
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This simulation study investigates how bias in parameter estimates of substantive interest 

depends on the properties of planned missing data designs. In the simulation, the planned 

missing data are generated assuming the absence of unit-nonrepsonse and additional item-level 

nonresponse. The simulation intends to answer four research questions: (1) What is the minimum 

overlap percentage required between any two rotation variables in order to recover the 

correlations? (2) How missing percentages affect the bias? (3) Do the results differ for 

continuous and categorical data? and (4) Do the sample sizes affect the results?  

The simulation design consists of three simulation factors, the design settings including 

overlap percentages and missing percentages (nine variations listed in Table 5), type of 

independent variables distributions (multivariate normal distribution, skewed continuous 

distribution and categorical distribution), and sample sizes (100, 1000, and 10000 cases). In total, 

there are 9×3×3 = 81 fully crossed simulation settings. 

Design settings. When planning the missing data, the overlap and missingness of any 

two rotation variables X1 and X2 are considered. For achieving the balancedness, the missing 

percentages of the two variables are assumed to be the same. The missing percentage varies 

given an overlap percentage between X1 and X2. 

Overlap percentages. The overlap percentages between the two rotation variables X1 and 

X2 are varied: 0%, 20%, 25%, 33% and 50% (corresponding to 0, 1/5, 1/4, 1/3 and 1/2 overlap 

cases of total cases). As an illustration (Figure 2 (a)), if the overlap percentage between X1 and 

X2 is 33%, it means that 1/3 of the sample has observations on both rotation variables. This also 

implies the two rotation variables lack overlap in 67% of the sample, meaning that 67% sample 

has observations in only one variable.  

Missing percentages. For each overlap percentage, the missing percentage ranges 

between the minimum and maximum. For example, if the overlap percentage is 33%, the 
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minimum missing percentage of both X1 and X2 is 33% (Figure 2 (a)) and the maximum missing 

percentage is 67% (Figure 2 (c)). Figure 2 (b) shows that the missing percentage of X1 and X2 can 

take on values between 33% and 67%. The minimum and maximum missing percentages are 

chosen to see how extreme the factor affects the parameter estimates. The variations of overlap 

percentage and missing percentage are listed in Table 5.   

 

Figure 2. Given 33% overlap between two rotation variables, the minimum missing percentage 

in (a) and maximum missing percentage in (c). 

 
 
 
 
 

 
 

 

 

 

Table 5. The design settings of overlap percentages and missing percentages in study 1. 

Overlap Percentage 0 20 25 33 50 
Minimum Missing Percentage 50 40 37.5 33 25 

Maximum Missing Percentage - 80 75 67 50 
 

Simulation data distributions. The simulated data consist of three variables, X1, X2, and 

Y. X1 and X2 represent any two variables from rotation blocks in a planned missing data design. 

The distributions of X1 and X2 are generated according to a multivariate normal distribution, 

skewed continuous distribution or a categorical distribution. For the skewed continuous 

distribution, X1 and X2 are log-transformed from the multivariate normal distribution. To 

X1 X2 X1 X2 

(b) (c) 

0% 
 
33% 
 
67% 
 
100% 
 X2 X1 

(a) 



   

 

20  

generate categorical variables, a cut-off point is chosen to transform X1 and X2 into two binary 

variables. Y is the dependent variable which is generated by regressing X1 and X2 on Y with a 

normally distributed error term. The true parameter values are set based on the PISA 2006 U.S. 

data (OECD, 2006). In the context of PISA data, X1 and X2 represent two scales and Y the 

achievement scores. The true values of the means of X1 and X2, the pairwise correlations among 

X1, X2, and Y, and the regression coefficients of regressing X1 and X2 on Y are listed in Table 6. 

The correlations among the variables are chosen to have a large range from 0.06 to 0.74.  

 

Table 6. The true parameter values in study 1. 

Parameters Multivariate 
normal Skewed Categorical 

Means    
𝜇-" 0.30 1.53 0.09 
𝜇-* 0.30 -1.65 0.38 
𝜇. 490 490 490 

Variances    
𝜎-"*  0.90 0.05 0.08 
𝜎-**  1.00 0.04 0.24 
𝜎.* 714 714 722 

Correlations    
	𝜌-"-* 0.42 -0.42 -0.23 
	𝜌-". 0.12 0.12 0.06 
	𝜌-*. 0.74 -0.73 -0.59 

Regression coefficients    
𝛽" (slope of X1) -6.74 -28.79 -7.91 
𝛽*(slope of X2) 22.59 -111.72 -33.57 

 

Simulation procedures. The population data were generated according to the true 

parameter values of the distributions described above. From the population data, a random 

sample was drawn in each iteration. To plan the missing data in the sampled data, data in X1 and 

X2 were deleted according to the overlap percentage and missing percentage in each design 
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setting. For example, for an overlap percentage of 33% and the missing percentage for both 

variables of 33% (Figure 2 (a)), X1 data were deleted for one third of randomly selected 

respondents, and X2 data were deleted for another third of respondents. The remaining third of 

respondents thus has data in both X1 and X2. After creating the planned missing data, predictive 

mean matching was used to impute the missing data, which resulted in five imputed complete 

data sets. A regression analysis that regresses X1 and X2 on Y was conducted. Results were 

pooled over the five data sets. The marginal means, pairwise correlations and regression 

coefficients were extracted from the analysis results. This process is replicated for 5000 times.  

Finally, the biases of means, correlations and regression coefficients were computed as 

the difference between the average estimates across simulations and the true parameter values. 

For the estimates of means and regression coefficients, 95% simulation confidence intervals 

were constructed as well. The standard errors used for the 95% simulation confidence interval 

were calculated as the standard deviation of the coefficients across simulations divided by the 

square root of the number of iterations.  

Results 

The biases of means, correlations and regression coefficients are plotted in Figure 3 to 7. 

In each figure, the plots from the first row to the third row present the results for the multivariate 

normal data, skewed continuous data and categorical data respectively. In each plot, the biases 

are presented in the order of the increased overlap percentage between X1 and X2 and increased 

sample size. The X-axis marks the combination of each overlap percentage with the minimum 

and maximum missing percentage. For the results of means and regression coefficients, the 

biases are standardized with the standard deviation of outcome Y and 95% simulation confidence 

intervals are plotted. To better see the effect of missing percentage, solid lines present the results 

for the maximum missing percentage and the dashed lines for the minimum missing percentage 
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of X1 and X2. The results for the correlation between X1 and X2 are in Figure 4, and the results of 

the correlation between X1 and Y and X2 and Y are in Figure 5. Notice the difference in Figure 5 

that the X-axis in the plots of correlation bias for X1 and Y (or X2 and Y) marks the overlap 

between X1 and Y and the missing percentage in X1, but the order of biases shown is still the 

same as the order of the increased overlap percentage between X1 and X2.  

Means. Figure 3 presents the biases of estimated means of X1 (the left column) and X2 

(the right column). For the multivariate normal distribution, regardless of the missing 

percentages, overlap percentages, and sample sizes, the means are recovered without bias. For 

the skewed and categorical data, the bias in means is found for the maximum missing 

percentages (e.g., 80%, 75%, and 67%) and the small sample size (n = 100). However once the 

sample size increases to 1000, the bias in means is negligibly small. Overall, with large survey 

data (sample size over 1000), the mean estimates are robust against large missing percentage 

(i.e., 80%) and no overlap. Even though for the small sample size of 100 and large missing 

percentage the mean estimates are much less reliable, the bias is still within 0.001 standard 

deviation of the outcome variable Y. Consistent with the findings in Katherine and John (2010), 

even though predictive mean matching can deal with nonnormal data, for small sample sizes and 

large missing percentages, bias might appear. This is likely due to the first step of this imputation 

procedure which generates initial parameters using linear regression. 

Correlations. Figure 4 presents the biases of estimated correlations between X1 and X2. 

Figure 5 presents the biases of estimated correlations between X1 and Y (the left column) and 

between X2 and Y (the right column). We first look at the correlations between the two rotation 

variables X1 and X2. For the multivariate normal and skewed continuous data, the trends of the 

bias in correlations are similar to each other. First, with no overlap, the bias in correlations is not 

shown in the plots because the bias is outside of the plotting range from -0.2 to 0.2. Second, as 
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the overlap increases, bias in correlations decreases. For sample sizes of 1000 and 10000, the 

bias becomes negligibly small (within the absolute value of 0.01) as overlap reaches 20%. 

Keeping missing percentages at the minimum largely help to reduce the bias for the small sample 

size of 100. However, for a sample size of 1000, the difference in bias between the minimum and 

maximum missing percentage becomes very small. Finally, for the categorical data, the bias 

decreases slower with an increasing overlap percentage as compared to the continuous data case. 

Bias remains even with 50% overlap. However, as long as there is overlap of 20%, the bias in 

correlations is still within the absolute value of 0.05. Moreover, increasing overlap to 50% only 

contributes to a small bias reduction, and keeping the missing percentage at the minimum does 

not help a lot to reduce the bias in this case. Overall, for large survey data with 20% or more 

overlap, bias is negligibly small for continuous data. This holds for various missing percentages.  

For the correlation between a rotation variable (X1 or X2) and the fully observed variable 

Y, the overlap percentages range from 20% to 75% and the missing percentages range from 25% 

to 80%. For the multivariate normal and skewed continuous data, the minimum missing 

percentage in X1 helps the bias reduction in the correlations between X1 and Y. This is not 

surprising because the less missing data X1 contains, the larger overlap between X1 and Y since Y 

does not contain any missing data. When the sample size increases to 10000, the difference 

between the minimum and maximum missingness becomes negligible small. Even with 80% 

missingness in X1 and a sample size of greater than 1000, the bias in the correlation between X1 

and Y does not exceed 0.03 in absolute value. In addition, as the overlap between X1 and X2 

increases, it also helps to reduce the bias in the correlation between X1 and Y. As shown for 50% 

overlap between X1 and Y (indicated as 50% overlap and 50% missingness), the bias of their 

correlation is less when X1 and X2 have larger overlap. This suggests that overlap between two 

rotation variables helps to recover not only the correlation between these two variables but also 
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the correlation between the rotation variable and a fully observed variable such as a variable 

from the common block. For the categorical data, the trend in bias is similar as for the 

continuous data, because one variable is continuous. For the correlation between X1 and Y, the 

biases from the minimum and maximum missing percentage are closer to each other than the 

correlation between X2 and Y. This is so because the true correlation X1 and Y is close to zero, 

while the true correlation between X2 and Y is 0.59.  

Regression coefficients. Figure 6 presents the biases of estimated regression coefficients, 

the slope of X1 (the left column) and X2 (the right column). When there is no overlap between X1 

and X2, most of the confidence intervals are not shown in the plots because they are outside of 

the plotting range of 0.2 standard deviations of the outcome Y, indicating significant bias. For all 

types of data, the bias in regression coefficients has the tendency to decrease as the sample size 

or overlap percentage increases. For the multivariate normal data with sample sizes of 1000 or 

more, the bias is negligible small if overlap is 20% or higher. The bias difference between the 

maximum and minimum missing percentage becomes also very small. For skewed and 

categorical data, the coefficients are estimated with larger bias and less reliability than with 

multivariate normal data. With large survey data and an overlap of 20% or higher, the bias is 

within 0.09 standard deviations of the outcome Y. The bias of the skewed data further reduces 

below 0.02 standard deviation when the overlap reaches 33% or more. For categorical data, 

similar results as for the correlation between X1 and X2 are obtained. The bias in the slope of X1 

reduces slowly as the overlap increases. The bias reduces below 0.05 standard deviations when 

the overlap exceeds 33%. 
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Figure 3. The biases of estimated means of X1 (the left column) and X2 (the right column) under 

the multivariate normal (the first row), skewed continuous (the second row) and categorical 

distribution (the third row) in study 1. 
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Figure 4. The biases of estimated correlations between X1 and X2 under the multivariate normal 

(the first plot), skewed continuous (the second plot) and categorical distribution (the third plot) in 

study 1. 
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Figure 5. The biases of estimated correlations between X1 and Y (the left column) and between X2 

and Y (the right column) under the multivariate normal (the first row), skewed continuous (the 

second row) and categorical distribution (the third row) in study 1. 
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Figure 6. The biases of estimated regression coefficients, the slope of X1 (the left column) and X2 

(the right column) under the multivariate normal (the first row), skewed continuous (the second 

row) and categorical distribution (the third row) in study 1.    
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Study 2 

Methods 

To illustrate how the overlap and missing percentage apply to the specific designs, the 

second study uses eight variables to construct a two-form design, three-form design, and two 

optimal incomplete block designs. The results show each design’s performance in recovering 

unbiased marginal means, correlations and regression coefficients. 

Data. Eight independent variables were generated according to a multivariate normal 

distribution with a sample size of 1000 cases. The independent variables and their parameter 

values were generated based on eight scales in PISA 2006 U.S. data (OECD, 2006). Table 7 lists 

the scales with their original names in PISA 2006 data set and their true parameter values 

(means, variances, correlations and regression coefficients). The pairwise correlations among the 

scales range between 0.16 and 0.80. The dependent variable (PVSCIE) is the plausible values of 

science performance and was generated according to the following regression model.  

PVSCIE' 	= 𝛽: + 𝛽"SCHANDS' + 𝛽*INTSCIE' + 𝛽ARESPDEV' + 𝛽CSCIEEFF' +

𝛽EPERSIE' + 𝛽FGENSCIE' + 𝛽HJOYSCIE' + 𝛽LSCINTACT' + 𝛽MPERSCIE' × JOYSCIE' +

𝛽":SCHANDS' × SCIEEFF' 	+	𝛽""GENSCIE' × RESPDEV' + 𝜀'    (1)  

 

Table 7. The independent variables in PISA 2006 US. data and true parameter values in study 2. 

 Variable Explanation Mea
n 

Varianc
e 

Regressio
n 

Coefficien
t Common 

variables 
SCHANDS Science teaching: hands-on activities 

 
oo 

0.68 0.80 -8.68 

INTSCIE General interest in learning science 0.02 1.16 -12.40 

Rotation 
variables 

RESPDEV Responsibility for sustainable 
development 

-0.31 0.88 13.16 

SCIEEFF Science self-efficacy 
 

0.21 1.31 30.79 

PERSIE Personal value of science 0.29 1.09 -9.02 

GENSCIE General value of science 0.15 1.19 16.62 
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JOYSCIE Enjoyment of science -0.04 1.03 21.90 

SCINTACT Science teaching: interaction -0.09 1.01 -9.25 

Interactions 
PERSIE×JOYSCIE   -4.22 

SCHANDS×SCIEEFF   6.75 

GENSCIE× RESPDEV   -5.25 
 

Designs. The four planned missing data designs are a two-form design, a three-form 

design and two optimal incomplete block designs with missing percentages of 50% and 33% 

respectively. The design properties (overlap and missing percentage) for each design are 

summarized in Table 8. For each design, two of the eight independent variables (SCHANDS and 

INTSCIE) are assigned to the common block while the other six variables are assigned to the 

rotation blocks. The six rotation variables are planned with missing data. 

 

Table 8. The overlap percentages between two rotation variables and missing percentages of the 

four designs in study 2. 

 

 

 

 

 

Two-form design. In the two-form design, the six rotation variables are split into two 

rotation blocks with three variable each, (RESPDEV, SCIEEFF, and PERSCIE in the first block 

and GENSCIE, JOYSCIE, and SCIEACT in the second block). Subjects are randomly assigned 

to one of the two forms, each containing a common block and one of the rotation blocks. To 

create planned missing data, the data of the second rotation block are deleted for subjects who 

Design Overlap 
percentage 

Missing 
percentage 

Two-form design 0% 50% 
Three-form design 33% 33% 
Optimal block design-50%  20% 50% 
Optimal block design-33% 33% or 50% 33% 
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get the first rotation block and vice versa. Thus, all the variables in rotation blocks have a 

missing percentage of 50% and a pairwise overlap percentage of 0% (but 50% with the variable 

of the common block). 

Three-form design. In the three-form design, the six variables are first allocated into three 

sets with two variables each (RESPDEV and SCIEEFF in set one, PERSCIE and GENSCIE in 

set two, JOYSCIE and SCIEACT in set three). Then, three rotation blocks are formed according 

to the three possible combinations of two sets. Subjects are randomly assigned to one of the three 

forms, each with a common block and one rotation block. To create the planned missing data, 

data of the unassigned variable sets are deleted for each subject (e.g., for the first rotation block 

that contains variables of the first two sets, the data of the third set are deleted). Thus, all the 

variables in rotation blocks have a missing percentage of 33%. The pairwise overlap percentage 

of the rotation variable is 33% since any two rotation blocks have one set of variables that 

overlaps.  

Optimal incomplete block designs. In the optimal incomplete block design with 50% 

missingness (each variable in the rotation blocks has 50% missing data), the six variables are 

assigned to 10 blocks according to the D-optimal criterion (Atkinson et al., 2007). Each block 

contains three variables as shown in Table 9. The overlap percentage of two variables across any 

two blocks is 20%. This optimal incomplete block design is a balanced incomplete block design. 

Subjects are randomly assigned to one of the ten forms, each with the common block and one 

rotation block. To create the planned missing data, data of the unassigned variables are deleted 

for each subject. 

In the optimal incomplete block design with 33% missingness (each variable in the 

rotation blocks contains 33% missing data), the six variables are allocated into six blocks 

according to the D-optimal criterion. Each block contains four variables as shown in Table 10. 
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The overlap percentage of two variables across rotation blocks is either 33% or 50% (Table 11). 

This optimal block design is also a partially balanced incomplete block design. 

 

Table 9. The variable assignment to ten blocks in the optimal incomplete block design with 50% 

missingness. 

Block 1 2 3 4 5 6 7 8 9 10 
SCHANDS 0 0 0 1 1 1 1 0 0 1 
INTSCIE 0 1 0 0 0 1 0 1 1 1 
RESPDEV 0 1 1 1 0 0 1 1 0 0 
SCIEEFF 1 0 1 0 1 0 0 1 0 1 
PERSIE 1 0 1 0 0 1 1 0 1 0 
GENSCIE 1 1 0 1 1 0 0 0 1 0 

 

Table 10. The variable assignment to six blocks in the optimal incomplete block design with 

33% missingness. 

 1 2 3 4 5 6 
SCHANDS 1 1 0 1 0 1 
INTSCIE 1 0 1 1 1 0 
RESPDEV 0 1 1 1 0 1 
SCIEEFF 1 1 0 1 1 0 
PERSIE 0 1 1 0 1 1 
GENSCIE 1 0 1 0 1 1 

 

Table 11. The overlap percentage for the optimal incomplete block design with 33% 

missingness. 

 SCHANDS INTSCIE RESPDEV SCIEEFF PERSIE GENSCIE 
SCHANDS 67% 33% 50% 50% 33% 33% 
INTSCIE 33% 67% 33% 50% 33% 50% 
RESPDEV 50% 33% 67% 33% 50% 33% 
SCIEEFF 50% 50% 33% 67% 33% 33% 
PERSIE 33% 33% 50% 33% 67% 50% 
GENSCIE 33% 50% 33% 33% 50% 67% 
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Procedures. A random sample of 1000 cases was generated in each iteration. The data 

were planned with missingness according to the four designs. The rotation forms were randomly 

assigned to subjects. Predictive mean matching was used to impute the planned missing data, 

resulting in five complete data sets for each design. The imputation of interactions used just-

another-variable approach (Seaman at al., 2012). Then, a pooled regression analysis using 

equation (1) was conducted. Finally, means, pairwise correlations, and regression coefficients 

were extracted from the analysis results. This process was replicated 5000 times.  

The biases of means, correlations and regression coefficients were computed as the 

difference between the average estimates across simulations and the true parameter values. To 

assess how reliable the estimates are, the regular 95% confidence intervals for the bias of means 

and coefficients were constructed nonparametrically, using the 2.5% and 97.5% quantile of the 

estimates across all iterations. 

Results 

The biases of means, correlations and regression coefficients under each design are 

plotted in Figures 7 to 9. Figure 7 and 9 show the standardized bias in means and regression 

coefficients and the 95% confidence intervals. The biases in pairwise correlations among the 

eight variables of the four designs are shown in Figure 8.  

Means. In Figure 7, the means of all the variables are recovered without bias even when 

there is no overlap for some pairs of variables in the two-form design. Moreover, the estimated 

means are overall more reliable in the optimal block design with 33% missingness, since the 

design has a lower missing percentage and stronger overlap (33% and 50%) than the optimal 

block design with 50% of missingness. 

Correlations. In Figure 8, each dot represents the bias in the correlation between two 

variables. The correlation biases in the two-form design are larger than in other designs. In the 



   

 

34  

two-form design, five among the 28 correlation biases exceed 0.1 (in absolute values) with the 

maximum bias being 0.28. For the three-form design, all absolute correlation biases are within 

0.04. For the optimal block designs with 50% and 33% of missingness, absolute biases never 

exceed 0.03 and 0.05, respectively. 

Regression coefficients. In Figure 9, the biases in regression coefficients of the eight 

main effects and three interaction effects are shown. The two-form design again has larger bias 

in the estimated regression coefficients. With the same missing percentage (50%), the optimal 

block design recovers the coefficients with much less bias due to the 20% overlap.  However, the 

estimates are less reliable compared to the optimal block design with 33% missingness due to its 

larger missing percentage. The three-form design and the optimal block design with 33% 

missingness produce similar results. With more overlap and a lower missing percentage, the 

interaction terms in these two designs are estimated with less bias compared to the two-form 

design and the optimal block design with 50% missingness. 
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Figure 7. The biases of estimated means in the four planned missing data designs. 
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Figure 8. The biases of estimated correlations in the four planned missing data designs. 
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Figure 9. The biases of regression coefficients in the four planned missing data designs. 
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Conclusion 

Using two simulation studies, this article investigates how the properties of missing data 

designs affect the bias of parameter estimates. The first simulation study investigates the bias in 

means, correlations and regression coefficients by systematically varying the overlap percentage, 

missing percentage, joint distribution of the data and sample size. The results show that the 

estimates of means are unbiased for large-scale survey data (i.e., sample sizes exceeding 1000 

cases) even when overlap is zero and the missing percentage is high. However, the recovery of 

correlations and regression coefficients requires positive overlap. The bias in correlations is 

negligibly small when there is 20% or more overlap for continuous data. A low missing 

percentage is of minor importance for bias reduction as long as the sample size is large (at least 

1000). Regarding the regression coefficients, the bias is negligibly small when overlap exceeds 

20% for multivariate normal data. For skewed and categorical data, the coefficients are estimated 

with larger bias and less reliability than for multivariate normal data, though with 33% overlap or 

higher all biases are still within 0.05 standard deviations of the outcome variable. 

The second simulation study compares a two-form design, a three-form design, and two 

optimal block designs with 50% and 33% missingness (Table 7). The results show that all 

designs recover the means of the eight variables without bias. The biases in correlations are 

negligibly small for all designs except for the two-form design which has no overlap across 

forms. For the regression coefficients, the two-form design again performs the worst due to no 

overlap. With the same amount of missingness, the optimal block design largely reduces the bias 

due to its 20% of overlap. Furthermore, the three-form design and the optimal block design 

produce negligibly small bias and more reliable estimates due to more overlap and less 

missingness. 
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To conclude, the choice of the design in a large survey strongly depends on the priority of 

the parameter estimates. If researchers are only interested in estimates of populations means, the 

two-form design is a good choice since it is simple and easy to implement. If preserving the 

correlations or regression coefficient is the main goal, enough overlap should be guaranteed. The 

choice of a specific design for creating sufficient overlap between variables depends on the 

percentage of items that are administered to respondents compared to the total number of items. 

It is advisable to first use a pretest to assess how many questions a respondent can answer 

without getting fatigue. Then, an optimal block design can be found to ensure the required 

overlap. If the number of items is too large to find an optimal design with sufficient overlap, it is 

advisable to reduce the number of items instead of increasing the number of questions 

administered to respondents. If hypothesis tests are the main interests, the amount of missingness 

should be kept as low as possible in addition to the sufficient overlap. In order to reduce a 

design’s missingness percentage, it is better to again restrict the number of items instead of 

increasing respondents’ burden.  

Implementing a planned missing data design in practice requires many other 

considerations. For instance, should the missing data be planned on the item-level or on the 

scale-level? On the item-level, items are spread across the blocks or forms without considering 

the scales. On the scale-level, items are kept together within scales which are then assigned to 

blocks or forms. Studies showed that spreading the items across forms help to lower the standard 

error of regression coefficients, given that the procedure of handling the missing data (FIML or 

multiple imputation) can sufficiently account for the number of variables (Graham at al., 2006; 

Collins et al., 2001). However, in large surveys, imputation is challenging with hundreds of 

variables. From the design point of view, if the parameters of interest are on the item-level, the 

overlaps among items should be guaranteed. If the parameters of interest are on the scale-level, 
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an optimal block design can be found on the scale-level by treating the items within a scale as 

one unit.  

From the imputation point of view, there are viable ways for solving the problem of 

simultaneously imputing too many variables. One solution is to reduce the number of variables 

for sequential imputations. That is, imputing groups of variables sequentially. This can be done 

in many ways. For example, in large-scale educational assessments, two-stage imputation is 

implemented by first imputing the achievement scale scores then using the achievement scores to 

impute other background data (authors, 2017; Weirich et al., 2014). One can also sequentially 

impute groups of variables that are formed naturally by design (Kaplan & Su, 2016). How to 

select variables and in which sequence they should be imputed without harming the recovery of 

parameter estimates are the challenges in imputing planned missing data in large surveys, which 

need to be addressed in future studies. 
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Abstract 
 
 

Planned missing data designs in large surveys can efficiently reduce respondents’ burden 

and lower the cost associated with data collection, without cutting down on the questionnaire 

items. Imputing large amounts of planned missing data without harming the validity of causal 

parameter estimates is a big challenge. Contrary to the common belief that all auxiliary variables 

should be used to impute missing data when the missingness is ignorable, we use graphical 

models to illustrate that in some cases including the auxiliary variables is not necessary and in 

other cases it causes bias in parameter estimates. We implement simulation studies with different 

data distributions to show that whether an auxiliary variable should be included in the imputation 

model not only depends on the causal relationship between the auxiliary variable and the 

missingness of other variables but also on parameters of interest. Practical implications of 

imputing planned missing data are discussed. 

 

Keywords 

Graphical models, planned missing data designs, missing data, missing at random, multiple 

imputation, imputation model, auxiliary variable 
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Introduction 

Planned missing data designs in large surveys can efficiently reduce respondents’ burden 

and lower the cost associated with data collection, without cutting down on the questionnaire 

items. With the advances in the analysis of missing data, methods like multiple imputation 

(Rubin, 1987, 1996) allow researchers to analyze data from planned missing data designs 

without having to discard incomplete cases. The imputation methods should not interfere with 

the researchers’ aim to draw valid descriptive and causal conclusions. Research has shown that 

methods such as predictive mean matching (Little, 1988) perform relative well in imputing 

planned missing data (Kaplan & Su, 2016, 2018; Su, 2018). One of the challenges in planned 

missing data designs of large surveys is to impute large quantities of items or variables. Is it 

necessary to use all or many covariates, so-called auxiliary variables, to impute? What’s the 

impact of using these variables to impute regarding the validity of causal parameter estimates?  

Prior research suggested to include as many auxiliary variables as possible (Schafer, 

1997; Collin et al., 2001) when imputing missing data with ignorable missingness mechanism, 

namely the inclusive approach. More recently, studies have shown with several examples that 

including all variables in the imputation model can bias the causal parameter estimates 

(Thoemmes & Rose, 2014; Thoemmes & Mohan, 2015). Correctly specified imputation models 

not only guarantee unbiased parameter estimates but also reduce the number of unnecessary 

auxiliary variables and thus model complexity. How to identify such imputation models without 

harming the validity of parameter estimates, especially if the interest is in causal parameters? 

The theory of graphical models for missing data (m-graphs) has been laid out by Mohan et al. 

(2013), Mohan & Pearl (2014), and Pearl & Mohan (2013). This paper uses graphical models to 

discuss the auxiliary variables that are required or unnecessary for imputing planned missing 

data. This paper shows that contrary to the common belief that all auxiliary variables should be 
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used to impute missing data when the missingness is ignorable, in some situations including the 

auxiliary variables will cause bias. To be more specific, we lay out three typical cases to show 

when the auxiliary variable is not necessary or should not be used to recover unbiased parameter 

estimates when the missingness is ignorable. The three cases are when including the auxiliary 

variable is not necessary to obtain unbiased parameter estimates, when it is only necessary for 

some parameter estimates, and when it biases all parameter estimates. Furthermore, in order to 

find out how well the theory works in practice, simulations are implemented under the finite 

sample size and varied data distributions to examine the bias in means, correlations and 

regression coefficients.  

Based on the theory of graphical models, for planned missing data designs we found that 

the inclusion of a fully observed variable in the imputation model strongly depends on the causal 

relationship between this variable and the missingness of other variables. The decision also 

differs for means, correlations and regression coefficients. The illustrated three typical scenarios 

in a planned missing data design guide practice to select imputation variables given parameters 

of interest. Based on the simulations, we found additional bias in parameter estimates can also be 

introduced by the limited number of imputations or an inadequate method for imputing 

categorical variables. The paper is organized as following. We first briefly discuss the standard 

missing at random (MAR) definition (Rubin, 1976) in relation to the graphical representation. 

Then we introduce the theory of identification of casual parameters using graphical models under 

the context of missing data. Followed by the introduction of missingess mechanisms using 

graphs, we illustrate with graphs the three typical cases in planned missing data designs. For 

each case we show and discuss simulation results. Finally, the practical implications of the 

suggested three cases are discussed with regard to planned missing data designs.  

Standard Missing at Random in relation to Graphical Representation  
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The missingness in a planned missing data design needs to be ignorable when applying 

multiple imputation. However, the standard definition of MAR appears to be difficult to interpret 

in practice. There are a few versions of interpretations in the literature (Raghunathan, 2016; 

Enders, 2010; Schafer & Graham, 2002; Thomas & Mohan 2013). Some authors use Yobs for the 

observed part of data in Y, and Ymis for the missing part of data in Y. The question is that at which 

level does the “missing part” refer to. Does it refer to the missing values in Y or any of the 

variables that contain missing data in a data matrix Y? In the standard definition of MAR, it is 

hard to distinguish if the missingness refers to the occurrence at the event-level or the random-

variable-level. Tian (2015) made a distinction between these two levels using graphs. Tian 

defined variable-level MAR (notated as MAR+) and event-level MAR (notated as MAR*). The 

original MAR assumption (Rubin, 1976) guarantees that likelihood-based inference can be 

performed while ignoring the missing mechanism. But from a modeling point of view, it is more 

natural to work with variable-level independencies. In addition, in many articles that work with 

variable-level independencies, another confusion arises when coming to determine which 

variables are referred to as MAR. Do we refer to the variable with missing data locally or do we 

refer to all the variables in a whole data set?  Tian defined Local MAR in which one can identify 

MAR for each variable separately. Tian also defined G-MAR to identify the MAR condition for 

all variables in a graph.  

For a planned missing data design, it is natural to consider the variable-level when 

assigning variables into blocks (e.g., in incomplete block designs or the three-form design). In 

the imputation stage, the approach for multiple imputation also automatically works at the 

variable-level. For example, the R package mice (van Buuren & Groothuis-Oudshoorn, 2010) 

uses the fully conditional specification approach (van Buuren, 2007) which specifies the 

multivariate model by a series of conditional models for each incomplete variable. When 
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imputing planned missing data in large surveys, due to large amounts of variables, considering 

the missing mechanism for each variable (locally) helps to determine the imputation model case 

by case. Thus we refer to the planned missingness at the variable-level locally in the following 

discussion.  

 

Graphical Representation of Missing Data 

The graphs that we are going to use are also referred to as directed acyclic graphs 

(DAGs), or in the context of missing data, m-graphs (Mohan et al., 2013). The arrows in the 

graphs do not imply linearity but functional relationships with unknown form. The nodes in the 

graphs can represent fully observed, partially observed variables, unobserved variables or 

missingness indicators. Observed variables are often with error terms that represent other 

unobserved disturbance that have direct effects on this variable. The error terms notated as letter 

𝜀 are omitted for simplicity. In m-graph, the nodes labeled R represent the causal mechanism that 

is responsible for missingness. For example, in planned missing data designs the missing 

indicator R is mainly caused by the blocking variable B. The m-graphs can be regarded as the 

data-generating mechanisms for any variables in the planned missing data designs, where the 

values of each variables are determined by the values of the variables that have direct arrows 

pointing into this variable.  

 

 

Identification of Causal Parameters 

In order to identify the causal effect, we rely on the d-separation criterion (Pearl, 2009) 

which determines whether two variables in a graph are statistically independent of each other 

conditional on a set of other variables. We only discuss the conditioning approach for 
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identification of the causal effect, although other approaches are available, for example, the 

instrumental variable approach (Angrist et al., 1996; Steiner et al. 2015). In order to illustrate the 

conditioning approach with graphs, we slightly modify the m-graphs that are used in Thoemmes 

and Mohan (2015). We use solid rectangles around the variable to indicate that a variable has 

been conditioned on.   

For identifying the causal effect of X on Y, we would first need to find all the paths that 

connect X and Y through directed or bi-directed arrows. We can identify the causal effect 

between X and Y, when conditioning on a set of variables that block the back-door paths. The 

name back-door echoes conditioning, indicating that the paths with arrows pointing at X should 

be blocked; these paths can be viewed as entering X through the back door (Pearl, 2009). There 

are many possibilities how X and Y are connected. We summarize three typical scenarios. The 

first scenario is that X and Y are connected via a common cause variable Z, e.g., X ¬ Z ® Y. 

Conditioning on Z blocks the path from X to Y. The second scenario is that X and Y are connected 

via a mediator M, e.g., X ® M ® Y. Conditioning on M blocks this path from X to Y. The third 

scenario is that X and Y are blocked due to a collider C, e.g., X ® C ¬ Y. But conditioning on 

the collider will create a spurious association between X and Y, thus, opens the path.  

Recoverability. Recoverability refers to the identification of causal effects in m-graphs. 

What recoverability means is that if the data are generated by any process compatible with a 

graph, a procedure exists that computes an estimator for the parameter of interest such that, in the 

limit of large samples, it converges to a bias-free estimate of the parameter. This procedure is 

called a “consistent estimator.” Recoverability is the sole property of the graph and the causal 

relationships between the variables, not of the data available, or of any routine chosen to analyze 

or process the data (Mohan et al., 2013). One should be aware that recoverability is only related 

to identification not estimation. In other words, even if a causal parameter is recoverable with 
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regard to a specific graph, it does not automatically imply that the parameter is estimable without 

bias from finite data. In particular, conditioning on variables that induce bias, like collider 

variables, may result in biased parameter estimates.  

Recovering Means. Thoemmes and Mohan (2015) illustrated the graphical criteria for 

recovering means and regression coefficients. To summarize, suppose variable Y contains 

missing data with its missing indicator denoted by RY, the mean of Y can be recovered if there 

exists a set of fully observed variables W (which can be treated as auxiliary variables) such that 

the following conditional independence holds: 

Y ⊥ RY | W       (5) 

Recovering Regression Coefficients. If we are interested in recovering the regression 

coefficient of Y on X. Both variables contain missing data and the missing indicators are RY and 

RX. In order to recover the regression coefficient, Y has to be d-separated from RY and RX, 

conditional on X and a set of fully observed variables W (equation 6):  

Y ⊥ {RY, RX} | X, W       (6) 

For more complicated cases, namely when W is not fully observed, additional conditional 

independence between W and the missingness indicators is required, that is W⊥{RW, RX} | X. For 

theoretical proofs, readers can refer to Mohan et al. (2013) regarding ordered factorization. This 

paper only discusses cases with fully observed W. 

Recovering Correlations. Thoemmes and Mohan (2015) did not discuss the criteria for 

identifying the correlation between X and Y. From the overlap assumption we discussed earlier 

we know that in order to recover the correlation between X and Y, we need to have observations 

on both X and Y. In addition, the correlation of X and Y is computed as the standardized 
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regression coefficient using the variance of X and the variance of Y. Thus in order to recover the 

correlation between X and Y, conditional independency in equation (6) needs to hold as well. 

Missing Data Mechanism 

Here we illustrate the identification of means and regression coefficients using simple 

illustrative examples. These examples also present different missingness mechanisms. Suppose 

we have two variables X and Y, and we are interested in recovering the mean of Y and the 

regression coefficient of Y on X. X is fully observed. We use a direct arrow pointing from X to Y 

to present the direct causal effect from X to Y. We use Y* to represent the realized data of Y. We 

can think of Y as the variable with complete data in theory and Y* as the variable with missing 

values in practice. We can also call Y* a proxy variable of Y. Thus, the observed data in Y* are 

directly obtained from Y, and we draw a directed arrow from Y to Y*. The missing data in Y are 

determined by the missingness indicator RY which takes on values of 0 and 1. If RY is 0, Y* is 

missing; if RY is 1, Y* takes the value of Y. Thus Y* is caused not only by Y but also RY. We draw 

a directed arrow from RY to Y*. Graph 1 is the causal graph that presents the data generating 

mechanism of X, Y, Y* and RY. 

MCAR. The graph in Figure 1 shows the missing data in Y are missing completely at 

random. In this case, the missing values in Y* are completely determined by RY (which itself is 

completely determined by a random error term which is not shown in the graph). The 

missingness RY is due to a random procedure which is independent of Y. From a graphical point 

of view, Y and RY are d-separated because the only path connecting Y and RY is naturally blocked 

by collider Y*. Thus, without conditioning on any other variables the unconditional independency 

RY ⊥ Y holds. Based on the graphical criterion, the mean of Y is recoverable. The regression 

coefficient of Y on X can be also recovered, because RY ⊥ Y.  
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The data generating mechanism that is encoded in this graph may represent a random 

attrition problem in a randomized experiment. X is the treatment or control condition, Y is the 

outcome and Y* contain missing data due to random attrition of respondents. This graph implies 

that there are no confounders between the treatment and outcome, which is guaranteed by 

randomization. Respondents drop out from the experiment according to an independent random 

process. That means the attrition rates are the same for treatment and control group, and are not 

affected by respondents’ characteristics or the experiment itself. 

 

Figure 1. The graph of X and Y where Y is missing completely at random. 

 

MAR. The graphs in figure 2 shows that the missing data in Y are missing at random. It 

has an additional causal path from X to RY. In this case, the missingness indicator RY is not only 

caused by some independent random process (which is not explicitly shown in the graph) but 

also by the fully observed variable X. Y and RY are no longer d-separated unless one conditions 

on X, since Y is connected with RY via X. We draw a solid rectangular box around X to indicate 

that the back-door path Y ¬ X ® RY is blocked after conditioning on X. Based on the graphical 

criterion, the mean of Y and regression coefficient of Y on X are recoverable conditional on X, 

because RY ⊥ Y | X. 

This graph can represent the data generating mechanism of a randomized experiment 

with attrition that is affected by the treatment. For example, if the treatment is a medication for 

curing a disease, the patients who are assigned to the treatment show strong side effect and they 

drop out from the study. The attrition rate in the treatment group is thus much higher than in the 

 Y Y*   X 

RY 
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control group. But within the treatment group or control group, the patients drop out randomly. 

The graph also implies that the reason for patients’ attrition is due to some independent random 

process and the treatment, not other variables such as the characteristics of patients.  

 

Figure 2. The graph of X and Y where Y is missing at random. 

 

 

 

 

MNAR. The graph in Figure 3 shows that the missing data in Y are missing not at 

random. The missingness indicator RY is directly caused by Y. Y and RY are no longer d-

separated. Conditioning cannot help us to block the path between Y and RY because there is no 

observed variable between the two variables on which we could condition. Thus, based on the 

graphical criterion, the mean of Y and regression coefficient of Y on X are not recoverable. 

An example for this graph would be a situation where respondents refuse to provide their 

outcomes because the outcome itself. For example, let X be a randomly assigned math training 

program and Y a math achievement score collected in a survey. If at the end, students who 

obtained lower math scores more likely refuse to reveal their scores, the missing data are directly 

caused by the outcome. This graph also implies that the missingness does not depend on the 

treatment status, that is, whether students choose to reveal their scores does not depend on the 

program assigned.   

 

 Y Y*   X 

RY 

 Y Y*   X 

RY 
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Figure 3. The graph of X and Y where Y is missing not at random. 

 

 

Graphical Representation of Planned Missing Data  

In planned missing data designs, an item (also referred to as variable) is an individual 

task that is administered to a respondent. A block is a set of items that are blocked by design. A 

block of variables such as demographic information that contains no planned missing data is 

called a common block. Blocks with planned missing data are called rotation blocks. The 

variables that are assigned to rotation blocks are referred to as rotation variables. A form is the 

actual set of blocks that is administered to examinees. A form can contain either multiple blocks 

or only one block. Typically, a form contains a common block and at least one rotation block. 

The missing percentage of a single variable is the percentage of missing cases in this variable. 

The overlap percentage of two variables is the percentage of simultaneously observed values in 

the two variables (relative to total number of cases). If the overlap percentage of two variables is 

0%, correlations cannot be recovered. We now focus on the causal relationships among the two 

rotation variables X1 and X2,  and one variable X3 from the common block. The two rotation 

variables X1 and X2 can come from any two different rotation blocks. This implies that cases with 

missing values in X1 are different from cases with missing values in X2. But X1 and X2 have 

common observed cases (positive overlap). X3 contains no missing data. 

Cases 1-3 (Figures 4-7) represent the causal relationships among X1, X2, X3, and Y in a 

planned missing data design. Y is the outcome variable that does not contain any missing data. X1 

 Y Y*   X 

RY 
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and X2 are planned with missing data through the block indictor B which generates the 

missingness indicators Rx1 and Rx2. X1*and X2* are the realized data of X1 and X2. They take on 

the values of X1 and X2 when Rx1 and Rx2 indicate that the data are observed, and have missing 

data (i.e., NAs) when Rx1 and Rx2 indicate the data are missing. In all graphs, both X1 and X2 

cause Y. We use PISA data as the example. Y is the math proficiency score, X3 is the motivation 

of learning math that is measured for all students, thus it is in the common block. X1 and X2 are 

variables from two different questionnaire forms, for example, X1 is the math self-efficacy 

measure from rotation block one and X2 is the number of hours of studying from rotation form 

two. We are interested in recovering the means of X1 and X2, the partial regression coefficients of 

Y on X1 and X2, and the correlations between each pair of variables. We will show that the 

conditions for recovering the parameters differ as the causal relationships among X3, X1, and X2 

changes.  

 

 

 

Case 1 

Figure 4 shows the causal relationships among X1, X2, X3, and Y in a planned missing data 

design where X3 is a common cause of X1 and X2. With the PISA data example, motivation of 

learning (X3) not only causes math self-efficacy (X1) but also study hours (X2).  

The missingness mechanism of X1 and X2 is missing completely at random (Figure 4), 

because X1 is d-separated from Rx1, and X2 is d-separated from Rx2 as well without conditioning 

on other variables, meaning Rx1 ⊥ X1 and Rx2 ⊥ X2. Given this unconditional independence, the 

means of X1 and X2 are recoverable. Moreover, the partial regression coefficients of X1 and X2 are 

also recoverable because Rx1 ⊥ Y | X1, Rx2 ⊥ Y | X2. Then the pair-wise correlations between 
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variables are recoverable as well, as long as we have overlap between each pair of variables. 

Since Y and X3 are fully observed we have overlap between Y and X1, Y and X2, X1 and X3, and X2 

and X3. In order to recover the correlation between X1 and X2, we should make sure that there is 

sufficient overlap between X1 and X2 when planning the missing data.  

 

Figure 4. The graphs of case 1: Planned missing data design for X1, X2, X3 and Y when X3 is a 

common cause between X1 and X2. 

 

Case 2 

Figure 5 shows the causal relationships among X1, X2, X3, and Y in a planned missing data 

design where X3 is a common cause of X2 and its missingness Rx2. With the PISA data example, 

motivation of learning math (X3) directly causes study hours (X2). In addition to the planned 

missing data in study hours (X2), motivation of learning math (X3) causes other missing data in 

study hours (X2). This can be the case that when students have low motivation of learning math, 

they tend to not report their study hours.  

The missingness mechanism of X2 is missing at random. In order to d-separate X2 and Rx2, 

we need to condition on X3 so that the back-door path Rx2 ¬ X3 ® X2 is blocked. We draw a 

solid rectangle to indicate the conditioning approach. The mean of X2 is recoverable once we 

condition on X3, because Rx2 ⊥ X2 | X3. The partial regression coefficient of X2 is recoverable 

without conditioning on X3, because Rx2 ⊥ Y | X2. Then the pair-wise correlations between 

variables are recoverable as well, as long as we have overlap between each pair of variables. 

B 

X1 Y X1* Rx1 

Rx2 X2* X2 X3 
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Figure 5. The graphs of case 2: Planned missing data design for X1, X2, X3 and Y when X3 is a 

common cause between Rx2 and X2. 

 

Case 3 

Figure 6 shows the causal relationships among X1, X2, X3, and Y in a planned missing data 

design where X3 is a common descendent of X2 and its missingness Rx2. X2 causes X3, and the 

missingness Rx2 also causes X3. Thus X3 is a collider between X2 and Rx2. The direct causal path 

between Rx2 and X3 implies that how the missing data planned in X2 or how the missing data are 

planned in the rotation block where X2 locates directly cause the response values in X3. For 

example, the rotation block where the variable study hours (X2) locates might create a context 

that causes some students to mis-report their motivations of learning math (X3). The missingness 

in X2 is planned as the same way as the other items in this rotation block. When students answer 

the question on study hours, they also need to answer the other questions in this block. If all the 

items in this rotation block mainly measure how much time or energy students devote to learn 

math, the context that is created by this specific group of items can affect the answers of 

following questions. In other words, being exposed to the question on study hours might results 

in a different response when answering the question on motivation of learning math.  

The missingness mechanism of X1 and X2 is missing completely at random. Because X3 is 

a collider that naturally blocks the path Rx2 ® X3 ¬ X2. Thus the unconditional independence 
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Rx2 X2* X2 

X3 
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assumption, Rx2 ⊥ X2 holds. Based on the inclusive approach for imputing missing data (Collins 

et al., 2001; Schafer, 1997), X3 is suggested to be included in the imputation model to help 

impute the missing data in X2. However, we argue that including X3 for imputing the missing data 

in X2 will induce bias not only in mean of X2, but also the partial regression coefficients of X2. 

We draw a solid rectangular to indicate the conditioning approach (Figure 6). 

Conditioning on collider X3, it opens the collider path Rx2 ® X3 ¬ X2. Thus X2 and Rx2 are no 

longer d-separated. This is because conditioning on the collider introduces the spurious 

association between X2 and Rx2 (as indicated with the dashed line between Rx2 and X2). This 

spurious association is responsible for collider bias in parameter estimates. Without conditioning 

on X3, the mean of X2 is recoverable, since the unconditional independence holds, Rx2 ⊥ X2. The 

partial regression coefficient of X2 is also recoverable, since conditional independence holds Rx2 

⊥ Y | X2. However, once we condition on X3, the mean of X2 will be biased, because a spurious 

association is introduced which d-connects Rx2 and X2. The partial regression coefficient of X2 

will also be biased, because Rx2 and Y are d-connected via the spurious association. 

 

Figure 6. The graphs of case 3: Planned missing data design for X1, X2, X3 and Y when X3 is a 

collider between X1 and X2. 
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Simulation Studies 

We implement simulation studies to investigate the three cases illustrated above. They 

are when including the auxiliary variable is not necessary to obtain unbiased parameter estimates 

(case 1), when it is only necessary for some parameter estimates (case 2), and when it biases all 

parameter estimates (case 3). 

Data  

We create X1, X2, X3, and Y according to the graphs (Figure 4-7). The structural equations 

of all variables are in simple linear parametric forms. The population means, variances, and 

weights that are used to create the linear functional forms of X1, X2, X3, and Y are chosen with 

reference to the PISA 2006 U.S. data (OECD, 2006). The true values of means and variances of 

X1, X2 and X3, pairwise correlations among X1, X2, X3 and Y, and regression coefficients of Y on 

X1 and X2 are listed in Table 1-3 for each case. 

The distributions of X1, X2 and X3 are varied as multivariate normal distributions, skewed 

continuous distributions, and categorical distributions. To generate skewed continuous 

distributions, we log-transform the normally distributed variables X1, X2 and X3. To generate the 

categorical variables, we choose cut-off points to transform X1, X2 and X3 into binary variables.  

In order to plan missing data in X1 and X2, the block indicator B is created as a three-level 

categorical variable. B takes on the values of 1, 2 and 3. When B equals 1, the value of X1 is 

missing (accordingly Rx1 equals 0 and Rx2 equals 1). When B equals 2, the value of X2 is missing 

(accordingly Rx2 equals 0 and Rx1 equals 1). When B equals 3, both X1 and X2 are observed (Rx1 

and Rx2 are 0). 20% of cases are randomly assigned to block 1, and another 20% are randomly 

assigned to block 2, and the rest to block 3. Thus, both X1*and X2* contain 20% of missing data. 

The overlap percentage between X1*and X2* (the ratio between the number of jointly observed 

cases and the number of total cases) is 60%.  
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The data in Case 2 and 3 (Figure 5 and 6) differ in the following aspects. For Case 2 

(Figure 5), in addition to the 20% planned missing data in X2*, more missingness in X2* is caused 

by X3. We create the additional missingness by choosing a cut-off value of X3. If X3 is greater 

than this value, X2* is missing. To be more specific, for the normally distributed data, if X3 is 

greater than 2.5, X2* is missing. For the skewed continuous data, if X3 is greater than 1.8, X2* is 

missing. This procedure produces 3% to 7% more missing data in X2*. The overlap percentages 

between X1*and X2* are from 53% to 57%. For Case 3 (Figure 6), the values of X3 are altered 

according to the missingness of X2. To be more specific, when the data are normal or skewed 

continuous distributions, if X2* is missing, X3 is divided by 10. When the data are categorical 

distributions, if X2* is missing, X3 equals 1. 

Table 1. Population parameter values of variables in case 1. 

Parameters Multivariate 
normal Skewed Categorical 

Means    
𝜇-"  0.939 1.687 0.383 
𝜇-*  0.876 1.447 0.381 
𝜇-A 0.798 1.744 0.482 
𝜇. 479.934 484.697 487.698 

Variances    
𝜎-"*   1.568 2.287 0.236 
𝜎-**  1.324 2.239 0.236 
𝜎-A*  0.893 0.028 0.250 
𝜎.* 772.510 905.920 777.222 

Correlations    
	𝜌-"-*  0.292 0.014 -0.064 
	𝜌-"-A 0.604 0.086 0.306 
	𝜌-*-A  0.488 0.069 0.224 
	𝜌-".  0.387 0.495 -0173 
	𝜌-*. -0.391 -0.247 -0.597 
	𝜌-A.  -0.082 -0.024 -0.179 

Regression coefficients    
𝛽: (intercept) 475.090 475.346 503.551 
𝛽" (slope of X1) 9.964 9.927 -7.778 
𝛽*(slope of X2) -5.149 -5.115 -33.761 
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Table 2. Population parameter values of variables in case 2. 

Parameters Multivariate 
normal Skewed Categorical 

Means    
𝜇-"  0.503 1.690 0.367 
𝜇-*  0.879 1.860 0.390 
𝜇-A 0.799 1.744 0.290 
𝜇. 475.611 482.622 476.439 

Variances    
𝜎-"*   0.808 0.029 0.232 
𝜎-**  1.329 0.006 0.238 
𝜎-A*  0.901 0.029 0.206 
𝜎.* 214.033 103.216 543.484 

Correlations    
	𝜌-"-*  0.001 0.002 -0.002 
	𝜌-"-A -0.003 0.001 -0.005 
	𝜌-*-A  0.491 0.208 0.142 
	𝜌-".  0.612 0.172 0.416 
	𝜌-*. -0.391 -0.040 -0.308 
	𝜌-A.  -0.197 -0.011 -0.042 

Regression coefficients    
𝛽: (intercept) 479.967 474.883 474.784 
𝛽" (slope of X1) 9.967 10.299 20.123 
𝛽*(slope of X2) -4.974 -5.197 -14.700 

 

Table 3. Population parameter values of variables in case 3. 

Parameters Multivariate 
normal Skewed Categorical 

Means    
𝜇-" 0.300 1.647 0.252 
𝜇-* 0.600 1.708 0.335 
𝜇-A -0.941 1.621 0.511 
𝜇. 475.060 482.928 475.824 

Variances    
𝜎-"*  1.098 0.044 0.188 
𝜎-**  0.894 0.031 0.223 
𝜎-A*  0.019 0.042 0.250 
𝜎.* 1016.982 401.432 41.657 

Correlations    
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	𝜌-"-* 0.303 0.597 0.392 
	𝜌-"-A 0.212 0.007 0.022 
	𝜌-*-A 0.686 0.024 0.042 
	𝜌-". 0.289 0.077 0.533 
	𝜌-*. -0.050 0.021 -0.104 
	𝜌-A. -0.035 0.005 -0.011 

Regression coefficients    
𝛽: (intercept) 475.056 474.696 474.975 
𝛽" (slope of X1) 10.177 9.553 10.072 
𝛽*(slope of X2) -5.094 -4.393 -5.059 
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Procedures 

We generated the population data of 50000 cases. Then we drew a random sample of 

1000 cases in each iteration. To plan the missing data in the sampled data, missing values in 

X1*and X2* were set according to the block indicator B. After creating the planned missing data, 

we used predictive mean matching to impute the missing data five times, resulting in five 

complete data sets. Two imputation models were chosen, one which includes X3 as an auxiliary 

variable to impute X1*and X2* and the other one without X3. We conducted regression analysis by 

regressing Y on X1 and X2. Results were pooled over the five data sets. The marginal means, 

pairwise correlations and regression coefficients were extracted from the analysis results. This 

process was replicated for 5000 times. Finally, the biases of means, correlations and regression 

coefficients were computed as the difference between the average estimates across simulations 

and the population parameter values. For the estimates of means and regression coefficients, 

95% simulation confidence intervals were constructed as well. The standard errors used for the 

95% simulation confidence interval were calculated as the standard deviation of the coefficients 

across simulations divided by the square root of the number of iterations. 

 

Results 

Case 1 

Means. Table 4 presents the biases and 95% simulation confidence intervals of estimated 

means of X1 and X2, with and without including X3 in the imputation model. For all types of data 

distributions, the means of X1 and X2 are estimated without bias regardless of including X3 in the 

imputation model or not. Given the unconditional independence, results show that, the means of 

X1 and X2 are recoverable and estimated without bias. This implies that if researchers are 
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interested in the unbiased means of X1 and X2, when X3 is a confounder between X1 and X2, X3  is 

not required in the imputation.  

 

Table 4. The biases and 95% simulation confidence intervals of estimated means of X1 and X2 in 
case 1. 

 

Regression coefficients. Table 5 presents the biases and 95% simulation confidence 

intervals of estimated regression coefficients of X1 and X2. For all types of data distributions, all 

coefficients are estimated without bias regardless of including X3 in the imputation model or not. 

Given the unconditional independence, the coefficients of X1 and X2 are recoverable and 

estimated without bias. Again, X3 is not necessary to be included in the imputation model for 

obtaining unbiased regression coefficients.  

 

Table 5. The biases and 95% simulation confidence intervals of estimated partial regression 

coefficients of X1 and X2 in case 1. 

 

Correlations. Table 6 shows the biases of pairwise correlations among X1, X2, X3 and Y. 

Without including X3 in the imputation model, the correlations between X1 and X3, and X2 and X3 

Model Parameter Normal Skew Categorical 
 Mean Bias CIL CIH Bias CIL CIH Bias CIL CIH 
With 
X3 

X1 0.000 -0.001 0.001 -0.001 -0.002 0.001 0.000 -0.001 0.000 
X2 0.000 -0.001 0.001 0.001 -0.001 0.002 0.000 -0.001 0.000 

Without 
X3 

X1 0.000 -0.001 0.001 0.000 -0.002 0.001 0.000 0.000 0.001 
X2 0.000 -0.002 0.001 0.000 -0.001 0.002 0.000 0.000 0.001 

Model Parameter Normal Skew Categorical 
 Coef Bias CIL CIH Bias CIL CIH Bias CIL CIH 
With 
X3 

X1 -0.012 -0.032 0.009 -0.010  -0.026 0.006 0.006 -0.031 0.063 
X2 0.014 -0.010 0.038 0.016   -0.001 0.034 0.031 -0.012 0.073 

Witho
ut X3 

X1 -0.003 -0.024 0.018 -0.007  -0.023 0.009 0.043 -0.005 0.091 
X2 0.015 -0.009 0.038 0.004  -0.014 0.021 0.005 -0.038 0.048 
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are biased. This is obvious because without X3 there is no overlap between these two pairs of 

variables. In this case if researchers are interested in recovering correlations among all pairs of 

variables, X3 has to be included in the imputation model. If the priority is not the correlations that 

involve X3, it can be excluded to simplify the imputation model. It will not affect the means and 

coefficients of X1 and X2 regarding bias.  

 

Table 6. The biases of pairwise correlations among X1, X2, X3 and Y in case 1. 

 
 
 
 
 
 

 

 

 

 

Case 2 

Means. Table 7 presents for case 2 the biases and 95% simulation confidence intervals of 

estimated means of X1 and X2, with and without including X3 in the imputation model. For all 

types of data distributions, the means of X2 are estimated with bias when X3 is not used in the 

imputation. The size of bias for normally distributed data is larger than the other two 

distributions, mainly because the size of correlation between X2 and X3 is much larger. 

Conditioning on X3, the means of X2 are recoverable and estimated without bias. When X3 is the 

common cause of the missingness in X2 and X2 itself, X3 should be included in the imputation 

model in order to avoid the bias in mean of X2. 

Model Parameter Normal Skew Categorical 
 Cor Bias Bias Bias 
With X3 X1X2 -0.001 0.002  0.000 
 X1X3 -0.001 -0.001 0.000 
 X2X3 -0.001 -0.001   0.001 
 X1Y -0.001 -0.001 0.001 
 X2Y 0.000 0.002 0.001 
Without X3 X1X2 0.000 -0.001  0.000 
 X1X3 -0.075 -0.013 -0.057 
 X2X3 -0.060 -0.013   -0.024 
 X1Y -0.001 -0.001 0.001 
 X2Y 0.001 0.000 0.001 
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Table 7. The biases and 95% simulation confidence intervals of estimated means of X1 and X2 in 

case 2. 

 

Regression coefficients. Table 8 presents the biases and 95% simulation confidence 

intervals of estimated partial regression coefficients of X1 and X2. For all types of data 

distributions, all coefficients are estimated without bias except for the case with categorical 

distribution. Based on the unconditional independence, the coefficient of X2 are recoverable 

without conditioning on X3. The bias that occurred in the case of categorical distribution is 

largely due to the inadequacy of imputation method. Nonetheless, the results imply that if 

researchers are not interested in means but only in unbiased regression coefficients, including X3 

in the imputation is not necessary. 

 

Table 8. The biases and 95% simulation confidence intervals of estimated partial regression 

coefficients of X1 and X2 in case 2. 

 

Model Par Normal Skew Categorical 
 Mean Bias CIL CIH Bias CIL CIH Bias CIL CIH 
With 
X3 

X1 0.000 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
X2 0.001 -0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.001 

Witho
ut X3 

X1 0.002 0.001 0.003 0.000 0.000 0.000 -0.001 -0.001 0.000 
X2 -0.037 -0.038 -0.036 -0.001 -0.001 -0.001 -0.007 -0.008 -0.007 

Model Par Normal Skew Categorical 
 Coef Bias CIL CIH Bias CIL CIH Bias CIL CIH 
With 
X3 

X1 0.004 -0.007 0.015 -0.018 -0.077 0.041 -0.025 -0.066 0.016 
X2 -0.003 -0.005 0.012 0.085 -0.030 0.200 0.075 0.032 0.118 

Witho
ut X3 

X1 0.007 -0.004 0.018 -0.030 -0.089 0.030 0.028 -0.014 0.070 
X2 0.001 -0.007 0.010 0.078 -0.039 0.194 0.009 -0.033 0.052 
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Correlations. Table 9 shows the biases of pairwise correlations among X1, X2, X3 and Y. 

Without including X3 in the imputation, the correlations between X2 and X3 are biased. The 

estimated correlations between X1 and X3 do not show strong bias because the true correlations 

between X1 and X3 are very small and almost negligible. In this case, if the means and 

correlations are the priorities, X3 should be included in the imputation.   

   

Table 9. Population parameter values of variables in case 2. 

 
 
 

 

 

 

 

 

 

Case 3 

Means.  Table 10 presents for case 3 the biases and 95% simulation confidence intervals 

of estimated means of X1 and X2, with and without including X3 in the imputation model. For all 

types of data distributions, the means of X2 are estimated with bias when including X3 in the 

imputation. For the multivariate normal distribution, the mean of X1 is also slightly biased. This 

might be largely due to the uncertainty of imputation. Given that the size of bias in mean of X2 is 

much larger and imputing the missing data in X1 needs to borrow the information from X2, the 

estimated mean of X1 can be slightly biased with limited sample size and limited number of 

imputation. Without X3 in the imputation, the mean of X2 is estimated without bias. But after 

Model Parameter Normal Skew Categorical 
 Cor Bias Bias Bias 
With X3 X1X2 -0.001 -0.001 0.000 
 X1X3 0.000 0.000 0.000 
 X2X3 0.000 0.000 0.001 
 X1Y -0.001 -0.001 -0.001 
 X2Y 0.000 0.000 0.002 
Without X3 X1X2 0.001 -0.001 -0.001 
 X1X3 0.000 0.001 0.002 
 X2X3 -0.038 -0.018 -0.045 
 X1Y -0.001 -0.001 0.000 
 X2Y 0.002 0.000 0.001 
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including X3,  X2 is estimated with bias due to the collider X3. This implies that to ensure the 

unbiased estimates of means of X2, X3 should not be included in the imputation model when X3 is 

the collider between X2 and its the missingness Rx2. 

 

Table 10. The biases and 95% simulation confidence intervals of estimated means of X1 and X2 

in case 3. 

 

Regression coefficients. Table 11 presents the biases and 95% simulation confidence 

intervals of estimated partial regression coefficients of X1 and X2. For all types of data 

distributions, the coefficients of X2 are biased after including X3 in the imputation. The 

coefficients of X2 are recoverable and estimated without bias when X3 is excluded from the 

imputation. One exception with the categorical distribution is that the partial regression 

coefficient of X1 is biased without X3. This is again somehow expected due to the imputation 

method. The interesting finding is that by including X3, the coefficients of X1 are also strongly 

biased. Though based on the theory with infinite large sample size, the coefficients of X1 should 

be recovered without bias, given the conditional independence holds, Rx1 ⊥ Y | X1 (Figure 6). 

However, including the collider biases the coefficients of X1. This is largely due to the fact that 

X1 and X2 are correlated. If the coefficients of X2 are biased, it is not surprising to see the bias in 

the coefficients of X1. The results imply that X3 should not be included in the imputation if the 

goal is to obtain unbiased regression coefficients.  

Model Parameter Normal Skew Categorical 
 Mean Bias CIL CIH Bias CIL CIH Bias CIL CIH 
With 
X3 

X1 -0.004 -0.005 -0.003 0.000 0.000 0.000 0.000 -0.001 0.000 
X2 0.360   0.358   0.362 -0.005 -0.005 -0.005 0.003 0.002 0.003 

Without 
X3 

X1 0.000   -0.001 0.001 0.000 0.000 0.000 0.000 -0.001  0.000 
X2  0.001  0.000   0.002 0.000 0.000 0.000 0.000 -0.001 0.000 
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Table 11. The biases and 95% simulation confidence intervals of estimated partial regression 

coefficients of X1 and X2 in case 3. 

 

Correlations. Table 12 shows the biases of pairwise correlations among X1, X2, X3 and Y. 

For the continuous variables, without including X3 the correlations between X1 and X3 , and X2 

and X3 are biased due to the lack of overlap. The size of bias depends on the size of true 

correlation values. After including X3 in the imputation, the bias is not improved. Since X3 

introduces collider bias, we found additional bias in correlations between X1 and X2, X1 and Y, 

and X2 and Y, compared to the bias when excluding X3. For the categorical distribution, the biases 

in correlations do not have strong systematic changes. In this final case, regardless including X3 

or not, the correlations that involve X3 are biased. But in order to preserve other correlations, X3 

should not be included in the imputation. 

 

 

 

 

Table 12. Population parameter values of variables in case 3. 

Model Parameter Normal Skew Categorical 
 Coef Bias CIL CIH Bias CIL CIH Bias CIL CIH 
With 
X3 

X1 -0.931  -0.960 -0.902 -0.204 -0.327 -0.082 -0.051 -0.064 -0.038 
X2 2.552   2.526   2.578 0.287 0.141 0.432 0.021 0.009 0.038 

Witho
ut X3 

X1 -0.025  -0.055 0.006 -0.011 -0.138 0.117 -0.030 -0.043 -0.017 
X2 0.033    -0.002 0.068 0.068 -0.084 0.219 -0.011 -0.023 0.001 

Model Parameter Normal Skew Categorical 
 Cor Bias Bias Bias 
With X3 X1X2 -0.114 -0.014  0.024 
 X1X3 -0.151  -0.006  -0.004 
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Conclusion 

This paper uses graphical models to investigate the specification of imputation models 

regarding obtaining unbiased parameter estimates of planned missing data. Contrary to the 

common belief that all auxiliary variables should be used to impute missing data when the 

missingness is ignorable, we show that in some cases including the auxiliary variables is not 

necessary and in other cases it causes bias in all parameter estimates. Even if the missingness 

mechanism is ignorable as frequently the case in planned missing data designs, whether an 

auxiliary variable should be included in the imputation model not only depends on the causal 

relationship between the auxiliary variable and the missingness of other variables but also on the 

parameters of interest. The illustrated scenarios guide researchers to identify these cases in the 

setting of planned missing data designs and decide if the auxiliary variable should be used in the 

imputation.  

To summarize, the first case shows that when the auxiliary variable is neither a cause nor 

a descendant of the missingness of another variable, it is not necessary to be used in the 

imputation model to recover unbiased mean and partial regression coefficient of this variable, 

unless the interest is on the correlations that involve this auxiliary variable. In the second case, 

 X2X3 0.073   -0.035 -0.003 
 X1Y -0.002 -0.001   -0.013 
 X2Y 0.017 -0.001 0.016 
Without X3 X1X2 -0.002  -0.003 0.026 
 X1X3 -0.147  -0.005 -0.005 
 X2X3 -0.476 -0.018 -0.007 
 X1Y -0.000   0.000 -0.013 
 X2Y 0.000 0.000 0.016 
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when the auxiliary variable is a common cause of a variable X and the missingness of this 

variable Rx, it should be used to recover the mean of X. But it is not necessary for recovering the 

partial regression coefficient of X. In the third case, when the auxiliary variable is a common 

descendant of X and Rx, it should not be used to recover any parameters, because conditioning on 

the auxiliary variable introduces collider bias. The cases examined by no means exhaust all 

possibilities. For example, future studies can look at cases with planned missing data in auxiliary 

variables, or when the outcome variable has missing data, or when the auxiliary variable is a 

cause or a descendent of the outcome variable.  

There are many challenges in obtaining unbiased causal parameter estimates in planned 

missing data designs. First the main challenge is to lay out the graphical model for all variables 

based on theory. However, if the causal model is laid out and the priority of parameters of 

interest is clear, we can identify if the parameters are recoverable. Second, even if the parameter 

estimates are recoverable by theory, it does not ensure that they are estimated without bias. 

Correctly specified imputation models have to be guaranteed to obtain unbiased estimates. Third, 

given a correctly specified imputation model, imputation methods need to be adequate on dealing 

with different types of data distributions and limited sample sizes, especially with categorical 

data. Bias can be reduced by increasing the sample size, but will not vanish given a finite sample 

since multiple imputation only delivers consistent parameter estimates. Further studies can look 

into the imputation procedures and methods that are capable of adapting to each variable case by 

case with regard to the search of imputation models.  
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