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Abstract

Planned missing data designs in large surveys can efficiently reduce respondents’ burden
and lower the cost associated with data collection, without cutting down on the questionnaire
items. If the missing data are not appropriately planned, it results bias in descriptive and potential
causal parameter estimates. For a fixed sample size, the extend of bias depends on the three
major characteristics of design and data: the missing percentage, the overlap percentage (i.e., the
portion of the cases where two items are observed jointly), and the distributions of variables. My
first two simulation studies investigate how the bias in marginal means, correlations and
regression coefficients depends on the chosen planned missing data designs and the related
characteristics.

Even if a planned missing data design allows researchers to recover parameters of interest
without bias, an incorrect choice of covariates at the imputation stage might actually introduce
bias. For example, if the missing data pattern of a specific form or booklet causes context effects
on an auxiliary variable that is used for imputing missing values, bias can be introduced. Thus,
including all measured variables in the imputation model is not necessary a good strategy and,
given the huge number of items in large surveys, frequently is problematic. The question then is,
how should researchers select the imputation variables to obtain valid parameter estimates? The
simulation studies investigate which variables not necessary or should not be included in the
imputation model. Graphical models provide the theoretical basis for my simulations and

explanations.
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Abstract

Planned missing data designs in large surveys can efficiently reduce respondents’ burden
and lower the cost associated with data collection, without cutting down on the questionnaire
items. If the missing data are not appropriately planned, the bias of parameter estimates results.
This paper implemented two simulation studies to investigate the bias in the marginal means,
correlations and regression coefficients using the planned missing data designs and multiple
imputation of the missing data. The first study shows that for a fixed sample size, the extent of
bias depends on the three major properties of design and data: overlap percentages, missing
percentages, and distributions of variables. The second study applies the properties of design to
illustrate that an optimal incomplete block design that ensures overlap can be a better choice than
a multiple-form design. The issues and strategies of planning and imputing missing data are

discussed.

Keywords
Planned missing data designs; large surveys; optimal incomplete block designs; multiple-form

designs; three-form designs; missing data; multiple imputation.



Introduction

Large survey data are great resources for conducting social science research. However, a
serious constraint with large surveys is that respondents can answer only a limited number of
questionnaire items without being overwhelmed. Moreover, with long questionnaires the validity
and reliability of measures very likely decreases. In order to overcome these limitations,
researchers can use designs with carefully planned missing data where respondents answer only
subsets of questionnaire items. This reduces respondents’ burden and lowers the cost associated
with data collection but nonetheless allows researchers to collect data on the full set of
questionnaire items. Constructing the subsets is a big challenge because the resulting
missingness structure in the data should not interfere with the researchers’ aim to draw valid
descriptive and, if possible, causal conclusions. Since the structure of the planned missingness
strongly affects parameter estimates, carefully implemented simulation studies need to be
conducted to compare different planned missing data designs with respect to valid and reliable
parameter estimation. If the goal is to provide data to end-users, how should planned missing
data be handled appropriately? In addition, what kind of missing data designs allow the
parameter estimates of interest to be recovered without bias? This paper will address these
questions with the focus on designs with two simulation studies.

The first simulation study investigates the optimal amount of missing data that occur in
each variable (i.e., missing percentage) and the amount of observed data in each pair of variables
jointly (i.e., overlap percentage) regarding the bias in the estimates of means, correlations and
regression coefficients. To illustrate how the overlap and missing percentage apply to the
specific designs, the second simulation study compares the two-form design, the three-form
design, the optimal block design with 50% missingness, and the optimal block design with 33%

missingness regarding the bias in the parameter estimates. The results show that given the same



amount of missing percentage, an optimal block design that ensures sufficient overlap and
maximizes the efficiency at the same time can be a better choice than a multiple-form design that
is frequently implemented in the psychological research.

This paper is organized as follows. In the background section, I give an overview of the
designs used in large surveys in sociology, psychology and education. Then, I introduce design
properties and commonly used planned missing data designs. Followed by the missing data
methods section, | illustrate the missingness mechanism with design examples and discuss
modern methods for dealing with planned missing data. The following two sections describe the
two simulation studies, including the methods and results. Finally, in the conclusion section I
discuss the findings of the two studies, the issues and strategies of planning and imputing
missing data.

Background

Carefully planned missing data designs can dramatically reduce the cost associated with
data collection, and even increase validity due to reducing participant burden (Rhemtulla &
Hancock, 2016). Planned missing data designs are chosen according to the characteristics of data
in specific research fields. In sociological research, researchers frequently use factorial surveys
(also called vignette experiments) to measure social judgments. For example, researchers
measure the perceived income by varying the factors such as gender, education and occupation
(Steiner et al., 2016). The factor levels are combined and formed as a vignette or a hypothetical
scenario for respondents to assess. Due to the large number of factors and factor levels, the
number of full factorial combinations is frequently too large for respondents to assess. Thus,
strategies for forming smaller subsets of vignettes such as randomly sampling vignettes (Rossi &
Nock, 1982), confounded factorial designs (Kirk, 1995), or D-optimal designs (Atkinson at al.,

2007) help to reduce respondents’ burden. However, not all of these strategies can satisfactorily



deal with the missing vignette assessments created by design. Randomly selecting vignettes often
results in biased parameter estimates because some effects of interest might be randomly
confounded (Su & Steiner, 2018; Steiner et al., 2016).

In behavioral or psychological research, due to the financial burden associated with
recruiting respondents, many survey questionnaires use existing survey instruments to obtain
information that can be used for a variety of purposes. Long questionnaires inevitably increase
respondents’ burden, which likely increases nonresponse rates. Raghunathan and Grizzle (1995)
implemented a split questionnaire survey design in an attempt to reduce the nonresponse rate in
the Cancer Risk Behavior Survey. Other planned missing data designs like the three-form design
outlined by John Graham and his colleagues (Graham et al., 2006) have gained popularity in
psychological research. The split questionnaire survey designs and three-form designs have
similar features. The complete questionnaires are split into multiple item sets and only a
selection of item sets is assigned to respondents.

A common goal in large-scale educational assessments is to estimate the proficiency or
achievement of students in different subject areas, for example in the National Assessment of
Educational Progress (NAEP) and the Programme for International Students Assessment (PISA).
Matrix-sampling designs (Shoemaker, 1973) and incomplete block designs (Frey et al., 2009;
van der Linden et al., 2004) have been used to increase the number of test questions. Combined
with a multidimensional Item Response (IRT) model, the proficiency scores of students can be
estimated by drawing multiple plausible values from the distribution of the latent proficiency
(Neal Thomas, 2004). Many studies have focused on item parameter estimates and proficiency
estimates while incorporating the uncertainty due to missing data (Amann et al., 2015;
Gonzalez & Rutkowski 2010; Hecht et al., 2015; Rutkowski, 2011; Weirich et al., 2014).

Missing data designs for context questionnaires were also considered and investigated (Adams et



al., 2013; Kaplan & Su, 2016; authors, 2017; OECD 2014). It is worth noticing that across the
different fields in the social sciences, only a few studies have addressed bias in the parameter

estimates of substantive interest, while many studies focused on the efficiency or power issue of

planed missing data designs (Graham et al., 2006; Pokropek 2011; Rhemtulla et al., 2016).

Planned Missing Data Designs
Design Properties

In planned missing data designs, an ifem is an individual task that is administered to a
respondent. In this paper, I use the terms item and variable interchangeably. A block or cluster is
a set of items that are blocked by design. I use the term block throughout this paper. A block of
variables that contains no planned missing data is called a common block. In a large survey,
demographic information of respondents represents important data for analysis. For example,
gender and race information are collected from all respondents. Blocks with planned missing
data are called rotation blocks. The variables that are assigned to rotation blocks are referred to
as rotation variables. A form is the actual set of blocks that is administered to examinees. A form
can contain either multiple blocks or only one block. Typically, a form contains a common block
and at least one rotation block.

To systematically plan the missing data, the amount of missing data and where the
missing data occur should be considered. The missing percentage of a single variable is the
percentage of missing cases in this variable. If the missing percentage is 100%, the population
means are not estimable. The overlap percentage of two variables is the percentage of
simultaneously observed values in the two variables (relative to total number of cases). If the
overlap percentage of two variables is 0%, correlations are not estimable, simply because of no

data are available for estimation.



Figure 1 presents the examples of planned missing data in any two variables X1 and X2 of
a survey questionnaire with n respondents. Imagine we have a dataset where rows are the
respondents and columns are the variables. The vertical bars in Figure 1 represent the observed
data in variable Xi or X>. Figure 1 (a) shows two full sized bars with no planned missing data in
both X1 and X>. The missing percentage of both variables is 0%. The overlap percentage is 100%.
This situation arises when both variables belong to the common block. In Figure 1 (b), the bar of
X> is half size of X1, meaning 50% of missing data are planned in X>. In this case, the overlap
percentage between X1 and Xz is 50%, because only half of the respondents have observed data
in both X7 and X>. Such a situation occurs when one variable (X1) comes from a common block
and the other variable (X2) from a rotation block. Figure 1 (¢) shows that both X7 and X> have
50% planned missing data. The overlap percentage is 50% as well. In this case the two variables
come from the same rotation block. In Figure 1 (d), the missing percentage of X1 and X2 is 50%.
However, the overlap percentage is 0%, since the observed data in X7 and X> do not overlap. This

example can represent that X7 and X> come from the different rotation blocks.

Figure 1. The scenarios of overlap between two variables in a planned missing data design.
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Multiple-form designs

Two-form designs. In two-form designs (Graham et al., 1996; Adams et al., 2013), all

variables are divided into three blocks, a common block X and two rotation blocks A and B



(Table 1). Half of the subjects are assigned to form 1 which contains the common block X and
rotation block A. The other half of respondents receives form 2, containing block X and B. None
of the subjects respond to blocks A and B simultaneously. The missing percentage of the
variables in either A or B is 50%. The overlap percentage between the variables from A and
variables from B is 0%. Thus, with the two-form design, the correlations between variables from

A and B are not estimable.

Table 1. The two-form design.

Common Block  Rotation Blocks

Form X A B
1 1 1 0
2 1 0 1

Three-form designs. To avoid the limitation of the two-form design, researchers can use
more than two rotation blocks. In three-form designs, variables are divided into four blocks, one
common block X and three rotation blocks A, B, and C (Table 2). One third of the respondents
get one of the three forms, XAB, XAC, or XBC. The missing percentage of variables in the
rotation blocks is 33%. The overlap percentage of two variables across rotation blocks (e.g., one
from A and one from B) is 33% as well. Thus, correlations of the variables across rotation blocks
are estimable. Researchers can apply similar ideas and extend the number of rotation blocks. The
form always contains the common block and any two of the rotation blocks. Raghunathan and
Grizzle (1995) implemented a split questionnaire survey design with five rotation blocks. Five
rotation blocks result in 10 forms, since there are 10 ways (5 choose 2) to combine any of the
two rotation blocks. However, the larger the number of rotation blocks, the larger the missing

percentage and the smaller the overlap percentage.



Table 2. The three-form design.

Common Block Rotation Blocks
Form X A B C
1 1 1 1 0
2 1 1 0 1
3 1 0 1 1

Incomplete Block Designs

When variables are arranged into rotation blocks using efficiency criteria such as
balancedness and optimality criteria, we call such designs balanced, partially balanced, or
optimal incomplete block designs. Respondents are then assigned with a form consisting of one
common block and one rotation block. In the following introduction to these designs, I focus on
the rotation blocks only.

Balanced incomplete block designs. A balanced incomplete block design (BIB) divides
the variables into multiple rotation blocks. Let ¢ denote the number of variables, & the number of
variables in each rotation block (also referred to as block size), b the number of rotation blocks,
and r the replication times for each variable. The design is called balanced because each pair of
variables is replicated the same number of times (4), which is also referred to as the associate
class (Montgomery, 2012). The BIB designs satisfy the following two equations:

bk=rt (1)
rtk—1)=21(-1) (2)

Consider a simple BIB design with four variables (¢ = 4) and a block size k = 3. Then, the
above two equations hold if we choose b =4, r =3, and 4 = 2, for instance. As Table 3 shows,
each rotation block contains three variables. This design is balanced because each variable shows

up with the same frequency (r = 3), and any pair of variables shows up equally often (4 = 2).
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Each block is assigned to one quarter of respondents. In this design, the missing percentage of

each variable is (b — ) / b = 25% and the overlap percentage is 1/ b = 50%.

Table 3. The BIB design with four variables and four rotation blocks.

Rotation Blocks Vi V2 V3 V4
1 1 1 1 0
2 1 1 0 1
3 1 0 1 1
4 0 1 1 1

Partially balanced incomplete block designs. Although a BIB design can be
constructed with any number of variables # and any block size &, the minimum number of blocks
b is fixed by these two parameters (Cochran & Cox, 1957). In most cases, the number of required
blocks b is too large to be implemented in practice. Thus, the balance criteria can be relaxed in
order to obtain a smaller number of blocks. Instead of having one associate class A, multiple
associate classes A4, ..., A are used. Then the incomplete block design is called partially
balanced. The fewer associate classes a PBIB design has, the closer it is to a BIB design. For a
PBIB design, the following equations need to hold (with an integer a;):

bk = rt 3)
rh—1) = ¥y aidi )

Consider an example with six variables (# = 6). We can for instance construct a partially
balanced incomplete block (PBIB) design with b = 3 blocks of size k = 4 and two association
class A;=1 and A1,= 2 (Table 4). In this design, the missing percentage of each variable is (b —r)
/' b =33% and the overlap percentages are 1, / b =33% and A4, / b = 67%. Notice if we group

variables V1 and V2 into block A, V3 and V4 into block B, and V3 and V4 into block C, this
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PBIB design is the same as the rotation part of the three-form design. Another example of a

PBIB design with 19 variables can be found in Kaplan & Su (2016).

Table 4. The PBIB design with six variables and four rotation blocks.

Rotation Blocks Vi V2 V3 V4 V5 V6
1 1 1 1 1 0 0
2 1 1 0 0 1 1
3 0 0 1 1 1 1

Optimal incomplete block design. With a large number of variables, finding an
incomplete block design with maximum balance by hand is no longer an easy task. Instead a
computer-generated-design that maximizing a specific optimality criterion can be used. Software
packages like jmp from SAS (SAS Institute Inc., 2012) or the R function optBlock() from the
AlgDesign package (R Core Team, 2014; Wheeler, 2014) search for an optimal incomplete block
design. For a predefined number of variables, blocks and block size, the function optBlock() uses
the design matrix X and searches for an incomplete block design such that the determinant of
X’X is maximized. The design matrix X contains all the predictors in the rotation blocks
including main and interaction effects of interest. The “D” in D-optimality reflects the
determinant criterion (Atkinson et al., 2007; Wu & Hamada, 2009). Maximizing the determinant
of X’X is equivalent to minimizing the volume of the joint confidence region of all effects, that
is, all effects captured by the design matrix X can be jointly estimated with maximum efficiency.
Another advantage of the optimal incomplete block design is the possibility of specifying higher
order interactions to be estimable, which is not achievable via multiple-form designs.

The search algorithms are flexible enough to accommodate designs with any number of
variables and block size. However, the algorithm does not automatically guarantee the minimum

missing percentage and maximum overlap percentage. Thus, researchers should always check
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the missing and overlap percentages for each generated design and adjust the number of blocks

and block size to find the maximum overlap percentage.

Missing Data Mechanisms and Methods

Rubin (1976) originally defined missingness R as a random variable which has a
probability distribution. The missingness mechanisms can be categorized as missing completely
at random (MCAR), missing at random (MAR), and missing not at random (MNAR). The
common belief is that with planned missing data designs MCAR or MAR is automatically met
and thus the parameters can be recovered using multiple imputation. By reviewing the
missingness mechanisms and methods, it is important to address that even if a planned misisng
data design follows MCAR or MAR, the parameters are not garantteed to be recovered without
bias.
Missing Data Mechanisms

Let D denote the hypothetical complete data matrix with n observations and k variables
and D" the realized data with the missing values. D contains two sets of variables U and V, D =
(U, V). The realized variables in U’contain missing data, and the realized variables in V" do not
contain any missing data. Thus, D" = (U", V") = (U", V). R denotes the indicator matrix of
planned missingness with respect to D”, taking values of 1 if values in D” are observed and 0 if
values in D" are missing. The planned missingness indicator R can have three relationships to the
hypothetical complete data D: (1) independent of variables in U and V, (2) dependent on
variables in V, but independent of variables in U, and (3) dependent on variables in U only, or
dependent on variables in both U and V. Imagine D contains all the variables in a large survey.
Variables in U belong to the rotation blocks that will be planned with missing data. Variables in

V belong to the common block so they will not contain any missing data.
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Missing completely at random. The missing data is missing completely at random when
planned missingness R is independent of variables in U and V, thus independent of D (see
equation (5)). In a planned missing data design, suppose the missing data in U are planned by
randomly assigning only half of the items to each respondent. That is, respondents get different
randomly sampled sets of items in U and each respondent always has missing values in half of
the items. In this random sampling design, due to randomization, the probability of being
observed in U is the same, which equals to 1/2 and does not depend on the distribution of U.
Thus, the conditional probability of R given the data D is equal to the probability of missingness
R (equation (6)).

RLD (5)
P(R| D)= P(R) (6)

For a multiple form design or an incomplete block design, MCAR is met when the blocks
are randomized. Let B denotes a blocking variable that indicates which rotation block the
variables in U belong to. In the two-form design, half of the variables in U belong to rotation
block one (denote these variables as Ui) and the other half to rotation block two (denote these
variables as U>). One form that contains the /" and U; and the other form that contains V" and U-
are randomly assigned to respondents. Respondents who get form one will have missing data in
U>", and respondents who get form two will have missing data in U;". Thus, the missing data in
D" = (Ui", Uy", V") is planned solely by randomizing B to respondents. The probability of being
observed in U;", U>" does not depend on the distribution of U nor Us. Each respondent has half
chance of being assigned to form one or form two. Thus the conditional probability of being
observed is the same as the marginal probability of being observed, P(R =1 | Ui, Uz, V)=P(R =

1)=%.
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Missing at random. The missing data is missing at random when missingness R only
depends on V. After conditioning on ¥, R is independent of U (equation (7)). The conditional
probability of R given U and V' is equal to the conditional probability of R given } alone
(equation (8)).

RLU|V (7)
PR|U,V)=PR|V) (8)

A randomized block design follows the MAR mechanism when the blocking variable B is
a variable in V. Consider the planned missing data designs blocked by school (the variable is
denoted as Vschoo). Within each school, each respondent gets an independent random sample of
the items in U. However, the number of items that are assigned to each respondent is different
across schools. For instance, students in school A are assigned with 50% items while students in
school B get 30% items, due to the fact that students in school A can assess more items without
getting fatigue. Thus, the probability of an item being observed depends on schools, but does not
vary within school, since within school all items in U have equal chance of being observed. In
other words, the probability of being observed is the same conditioning on school Vschool, P(R = 1
| U, Vischool) = P(R = 1| Vschool). In this case, the missing data method or analysis procedure need
to take into account the school variable to ensure the unbiased parameter estimates.

Missing not at random. The missing data is missing at random when missingness R
depends on U, both U and V, or unobserved latent variable. Accordingly, no conditional
independence holds, meaning that the missingness mechanism is nonignorable. Consider two
variables income Uincome and age Vige, if the missing data in U'income is due to Uincome or the
unmeasured variables, then the missing data is MNAR. For instance, the respondents with very
high incomes tend not to report their incomes. Or respondents have missing values in U'income

associated with higher anxiety which is an unobserved variable.



15

MNAR occurs frequently in practice even with planned missing data designs. For
instance, due to convenience, instead of random assignment researchers use the administrative
procedures that end up with more complex confounding between the variables planned with
missingness and the outcome variable. If the confounding variables are not measured, the
missing data will be MNAR. In addition, respondents assess a set of items in a form which can
introduce context effects. When the context effects create spurious association between the
missingness R and variables in U, the missing mechanism becomes MNAR. Thus, planned
missing data designs do not guarantee the missingness mechanism to be MCAR or MAR. Even if
they do, the parameter estimates are not guaranteed to be recovered without bias. The designs
and methods that deal with missing data need to be considered carefully in order to obtain
unbiased estimates.

Missing Data Methods for Planned Missing Data Designs

With the advances in the analysis of missing data, methods like multiple imputation
(Rubin, 1987, 1996) allow researchers to analyze data from planned missing data designs
without having to discard incomplete cases. Modern methods such as maximum likelihood or
full information likelihood (FIML) produce accurate parameter estimates where traditional
approaches (e.g., pairwise deletion and listwise deletion) fail when the missing mechanism is
MAR. Researchers can choose FIML when they use statistical packages such as sem (Fox et al.,
2014) or lavaan (Rosseel, 2012) in R (R core team, 2012) to deal with missing data. The
procedure integrates missing data handling into the estimation process and no missing data are
filled in. However, maximum likelihood is not flexible enough for researchers who want to use
complete data sets for further data manipulation or analysis. For instance, when large survey data

have item-level missing data but the analysis is conducted on the scale level, the process of



16

handling item-level missing data and the analysis cannot be treated separately using maximum
likelihood method.

Research by Graham et al., (1996), Graham et al., (2006), and Rughunathan,(1995) has
shown that multiple imputation performs well in imputing planned missing data of the cases
studied. Multiple imputation is more flexible in dealing with planned missing data in large
surveys. Since the imputation phase is separated from the analysis phase, researchers can use
additional auxiliary variables in the imputation phase to impute missing data. Once the complete
data sets are obtained, researchers can use a different set of variables for the analysis. Multiple
imputation is easy to implement for large survey data with different types of data distributions.
The approach that specifies the multivariate model by a series of conditional models, one for
each incomplete variable, is called fully conditional specification approach (van Buuren, 2007).
This approach is implemented in the mice package (van Buuren & Groothuis-Oudshoorn, 2010)
in R. Researchers can choose the imputation method based on the types of variables, for
example, Bayesian linear regression (norm) for normally distributed continuous variables,
logistic regression (logreg) for categorical variables with two levels, and polytomous logistic
regression (polyreg) for categorical variables with more than two levels. Other options such as
data mining methods (e.g., random forest) or methods for multilevel data (Carpenter & Kenward,
2006) are available as well. Predictive mean matching (pmm) (Little, 1988) has shown good
performance in imputing large-scale educational assessment data (Kaplan & Su, 2016). In
addition to standard multiple imputation, a summary of adaptations of multiple imputation for
large survey data can be found in Reiter & Raghunathan (2007). An adaptation that is applied in
large-scale educational assessment is the nested multiple imputation (or two-stage multiple

imputation, Rubin, 2003). Researchers use nested multiple imputations to combine the
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imputation of plausible values and the missing data from the context questionnaire (ABmann et
al., 2015; Weirich et al., 2014).

The common belief is that multiple imputations can recover any parameter estimates
from planned missing data designs when the missing mechanism is either MCAR or MAR.
However, studies have shown (Kaplan & Su, 2016; authors, 2017) that the bias of the parameter
estimates differ across planned missing data designs, especially for the estimates of correlation
and regression coefficient. Consider the two-form designs which result in zero overlap between
the rotation variables from the first form and the second form. Even though the software program
(e.g., mice package in R) delivers the imputed data, the estimates of correlations between the
rotation variables that have no overlap will be biased. Thus, the choice of planned missing data
designs needs to be carefully considered depending on the parameter of interest.

Even if the designs ensure that the parameters are recoverable without bias, in practice
there are likely other types of missing data which might induce bias. For instance, in addition to
the missing data by design, other item-level nonresponses frequently appear. To use multiple
imputation, the missingness mechanism of these item-level nonresponses should be ignorable.
Furthermore, unit nonresponse (i.e., no single measure for a sampled respondent has been
recorded.) might occur. In this case, methods like weighting adjustment can be applied (Kalton
& Kasprzyk, 1986). Though multiple imputation has become an easy-to-use method for imputing
planned missing data, many other issues such as choosing appropriate auxiliary variables in the

imputation model should be considered carefully as well.

Study 1

Methods
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This simulation study investigates how bias in parameter estimates of substantive interest
depends on the properties of planned missing data designs. In the simulation, the planned
missing data are generated assuming the absence of unit-nonrepsonse and additional item-level
nonresponse. The simulation intends to answer four research questions: (1) What is the minimum
overlap percentage required between any two rotation variables in order to recover the
correlations? (2) How missing percentages affect the bias? (3) Do the results differ for
continuous and categorical data? and (4) Do the sample sizes affect the results?

The simulation design consists of three simulation factors, the design settings including
overlap percentages and missing percentages (nine variations listed in Table 5), type of
independent variables distributions (multivariate normal distribution, skewed continuous
distribution and categorical distribution), and sample sizes (100, 1000, and 10000 cases). In total,
there are 9x3x3 = 81 fully crossed simulation settings.

Design settings. When planning the missing data, the overlap and missingness of any
two rotation variables X and X> are considered. For achieving the balancedness, the missing
percentages of the two variables are assumed to be the same. The missing percentage varies
given an overlap percentage between X1 and X>.

Overlap percentages. The overlap percentages between the two rotation variables X; and
X are varied: 0%, 20%, 25%, 33% and 50% (corresponding to 0, 1/5, 1/4, 1/3 and 1/2 overlap
cases of total cases). As an illustration (Figure 2 (a)), if the overlap percentage between X and
X2 1s 33%, it means that 1/3 of the sample has observations on both rotation variables. This also
implies the two rotation variables lack overlap in 67% of the sample, meaning that 67% sample
has observations in only one variable.

Missing percentages. For each overlap percentage, the missing percentage ranges

between the minimum and maximum. For example, if the overlap percentage is 33%, the
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minimum missing percentage of both X and X is 33% (Figure 2 (a)) and the maximum missing
percentage is 67% (Figure 2 (c)). Figure 2 (b) shows that the missing percentage of X7 and X> can
take on values between 33% and 67%. The minimum and maximum missing percentages are
chosen to see how extreme the factor affects the parameter estimates. The variations of overlap

percentage and missing percentage are listed in Table 5.

Figure 2. Given 33% overlap between two rotation variables, the minimum missing percentage

in (a) and maximum missing percentage in (c).

0% —
33%
67%
100% —
X1 Xo X1 X X1 X
(2) (b) (c)

Table 5. The design settings of overlap percentages and missing percentages in study 1.

Overlap Percentage 0 20 25 33 50
Minimum Missing Percentage 50 40 37.5 33 25
Maximum Missing Percentage - 80 75 67 50

Simulation data distributions. The simulated data consist of three variables, X, X>, and
Y. X1 and Xz represent any two variables from rotation blocks in a planned missing data design.
The distributions of X1 and Xz are generated according to a multivariate normal distribution,
skewed continuous distribution or a categorical distribution. For the skewed continuous

distribution, X1 and X are log-transformed from the multivariate normal distribution. To
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generate categorical variables, a cut-off point is chosen to transform X1 and X2 into two binary
variables. Y is the dependent variable which is generated by regressing X1 and Xz on Y with a
normally distributed error term. The true parameter values are set based on the PISA 2006 U.S.
data (OECD, 2006). In the context of PISA data, X1 and X2 represent two scales and Y the
achievement scores. The true values of the means of X1 and X2, the pairwise correlations among
X1, Xz, and 7, and the regression coefficients of regressing X7 and X on Y are listed in Table 6.

The correlations among the variables are chosen to have a large range from 0.06 to 0.74.

Table 6. The true parameter values in study 1.

Multivariate

Parameters Skewed Categorical
normal
Means
Ux1 0.30 1.53 0.09
Uxo 0.30 -1.65 0.38
Uy 490 490 490
Variances
0%, 0.90 0.05 0.08
o2, 1.00 0.04 0.24
o 714 714 722
Correlations
Px1x2 0.42 -0.42 -0.23
Px1y 0.12 0.12 0.06
Px2y 0.74 -0.73 -0.59
Regression coefficients
B (slope of X1) -6.74 -28.79 -7.91
B (slope of X2) 22.59 -111.72 -33.57

Simulation procedures. The population data were generated according to the true
parameter values of the distributions described above. From the population data, a random
sample was drawn in each iteration. To plan the missing data in the sampled data, data in X; and

X> were deleted according to the overlap percentage and missing percentage in each design
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setting. For example, for an overlap percentage of 33% and the missing percentage for both
variables of 33% (Figure 2 (a)), X1 data were deleted for one third of randomly selected
respondents, and X> data were deleted for another third of respondents. The remaining third of
respondents thus has data in both X1 and X>. After creating the planned missing data, predictive
mean matching was used to impute the missing data, which resulted in five imputed complete
data sets. A regression analysis that regresses X1 and X2 on Y was conducted. Results were
pooled over the five data sets. The marginal means, pairwise correlations and regression
coefficients were extracted from the analysis results. This process is replicated for 5000 times.

Finally, the biases of means, correlations and regression coefficients were computed as
the difference between the average estimates across simulations and the true parameter values.
For the estimates of means and regression coefficients, 95% simulation confidence intervals
were constructed as well. The standard errors used for the 95% simulation confidence interval
were calculated as the standard deviation of the coefficients across simulations divided by the
square root of the number of iterations.
Results

The biases of means, correlations and regression coefficients are plotted in Figure 3 to 7.
In each figure, the plots from the first row to the third row present the results for the multivariate
normal data, skewed continuous data and categorical data respectively. In each plot, the biases
are presented in the order of the increased overlap percentage between X; and X> and increased
sample size. The X-axis marks the combination of each overlap percentage with the minimum
and maximum missing percentage. For the results of means and regression coefficients, the
biases are standardized with the standard deviation of outcome Y and 95% simulation confidence
intervals are plotted. To better see the effect of missing percentage, solid lines present the results

for the maximum missing percentage and the dashed lines for the minimum missing percentage
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of X1 and Xz. The results for the correlation between X; and X> are in Figure 4, and the results of
the correlation between X1 and Y and Xz and Y are in Figure 5. Notice the difference in Figure 5
that the X-axis in the plots of correlation bias for X1 and Y (or X2 and Y) marks the overlap
between X1 and Y and the missing percentage in X1, but the order of biases shown is still the
same as the order of the increased overlap percentage between X; and Xa.

Means. Figure 3 presents the biases of estimated means of X1 (the left column) and X2
(the right column). For the multivariate normal distribution, regardless of the missing
percentages, overlap percentages, and sample sizes, the means are recovered without bias. For
the skewed and categorical data, the bias in means is found for the maximum missing
percentages (e.g., 80%, 75%, and 67%) and the small sample size (n = 100). However once the
sample size increases to 1000, the bias in means is negligibly small. Overall, with large survey
data (sample size over 1000), the mean estimates are robust against large missing percentage
(i.e., 80%) and no overlap. Even though for the small sample size of 100 and large missing
percentage the mean estimates are much less reliable, the bias is still within 0.001 standard
deviation of the outcome variable Y. Consistent with the findings in Katherine and John (2010),
even though predictive mean matching can deal with nonnormal data, for small sample sizes and
large missing percentages, bias might appear. This is likely due to the first step of this imputation
procedure which generates initial parameters using linear regression.

Correlations. Figure 4 presents the biases of estimated correlations between X1 and Xo.
Figure 5 presents the biases of estimated correlations between X1 and Y (the left column) and
between Xz and Y (the right column). We first look at the correlations between the two rotation
variables X and X>. For the multivariate normal and skewed continuous data, the trends of the
bias in correlations are similar to each other. First, with no overlap, the bias in correlations is not

shown in the plots because the bias is outside of the plotting range from -0.2 to 0.2. Second, as
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the overlap increases, bias in correlations decreases. For sample sizes of 1000 and 10000, the
bias becomes negligibly small (within the absolute value of 0.01) as overlap reaches 20%.
Keeping missing percentages at the minimum largely help to reduce the bias for the small sample
size of 100. However, for a sample size of 1000, the difference in bias between the minimum and
maximum missing percentage becomes very small. Finally, for the categorical data, the bias
decreases slower with an increasing overlap percentage as compared to the continuous data case.
Bias remains even with 50% overlap. However, as long as there is overlap of 20%, the bias in
correlations is still within the absolute value of 0.05. Moreover, increasing overlap to 50% only
contributes to a small bias reduction, and keeping the missing percentage at the minimum does
not help a lot to reduce the bias in this case. Overall, for large survey data with 20% or more
overlap, bias is negligibly small for continuous data. This holds for various missing percentages.
For the correlation between a rotation variable (Xi or X2) and the fully observed variable
Y, the overlap percentages range from 20% to 75% and the missing percentages range from 25%
to 80%. For the multivariate normal and skewed continuous data, the minimum missing
percentage in X helps the bias reduction in the correlations between X; and Y. This is not
surprising because the less missing data X7 contains, the larger overlap between Xi and Y since ¥
does not contain any missing data. When the sample size increases to 10000, the difference
between the minimum and maximum missingness becomes negligible small. Even with 80%
missingness in X1 and a sample size of greater than 1000, the bias in the correlation between Xi
and Y does not exceed 0.03 in absolute value. In addition, as the overlap between X1 and X>
increases, it also helps to reduce the bias in the correlation between X; and Y. As shown for 50%
overlap between X1 and Y (indicated as 50% overlap and 50% missingness), the bias of their
correlation is less when X and X> have larger overlap. This suggests that overlap between two

rotation variables helps to recover not only the correlation between these two variables but also
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the correlation between the rotation variable and a fully observed variable such as a variable
from the common block. For the categorical data, the trend in bias is similar as for the
continuous data, because one variable is continuous. For the correlation between X; and Y, the
biases from the minimum and maximum missing percentage are closer to each other than the
correlation between X2 and Y. This is so because the true correlation X; and Y is close to zero,
while the true correlation between X and Y is 0.59.

Regression coefficients. Figure 6 presents the biases of estimated regression coefficients,
the slope of Xi (the left column) and X> (the right column). When there is no overlap between X;
and X>, most of the confidence intervals are not shown in the plots because they are outside of
the plotting range of 0.2 standard deviations of the outcome Y, indicating significant bias. For all
types of data, the bias in regression coefficients has the tendency to decrease as the sample size
or overlap percentage increases. For the multivariate normal data with sample sizes of 1000 or
more, the bias is negligible small if overlap is 20% or higher. The bias difference between the
maximum and minimum missing percentage becomes also very small. For skewed and
categorical data, the coefficients are estimated with larger bias and less reliability than with
multivariate normal data. With large survey data and an overlap of 20% or higher, the bias is
within 0.09 standard deviations of the outcome Y. The bias of the skewed data further reduces
below 0.02 standard deviation when the overlap reaches 33% or more. For categorical data,
similar results as for the correlation between X1 and X are obtained. The bias in the slope of Xi
reduces slowly as the overlap increases. The bias reduces below 0.05 standard deviations when

the overlap exceeds 33%.
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Figure 3. The biases of estimated means of Xj (the left column) and X (the right column) under

the multivariate normal (the first row), skewed continuous (the second row) and categorical

distribution (the third row) in study 1.
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Figure 4. The biases of estimated correlations between X and X2 under the multivariate normal

(the first plot), skewed continuous (the second plot) and categorical distribution (the third plot) in

study 1.
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Figure 5. The biases of estimated correlations between Xi and Y (the left column) and between X>

and Y (the right column) under the multivariate normal (the first row), skewed continuous (the

second row) and categorical distribution (the third row) in study 1.
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Figure 6. The biases of estimated regression coefficients, the slope of X (the left column) and X>

(the right column) under the multivariate normal (the first row), skewed continuous (the second

row) and categorical distribution (the third row) in study 1.
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Study 2
Methods

To illustrate how the overlap and missing percentage apply to the specific designs, the
second study uses eight variables to construct a two-form design, three-form design, and two
optimal incomplete block designs. The results show each design’s performance in recovering
unbiased marginal means, correlations and regression coefficients.

Data. Eight independent variables were generated according to a multivariate normal
distribution with a sample size of 1000 cases. The independent variables and their parameter
values were generated based on eight scales in PISA 2006 U.S. data (OECD, 2006). Table 7 lists
the scales with their original names in PISA 2006 data set and their true parameter values
(means, variances, correlations and regression coefficients). The pairwise correlations among the
scales range between 0.16 and 0.80. The dependent variable (PVSCIE) is the plausible values of
science performance and was generated according to the following regression model.

PVSCIE; = S, + B,SCHANDS; + S,INTSCIE; + f;RESPDEV; + £,SCIEEFF; +
BsPERSIE; + fsGENSCIE; + B,JOYSCIE; + BgSCINTACT; + SoPERSCIE; X JOYSCIE; +

B10SCHANDS; x SCIEEFF; + B,,GENSCIE; x RESPDEV, + (1)

Table 7. The independent variables in PISA 2006 US. data and true parameter values in study 2.

Mea Varianc Regressio

Variable Explanation n e n
Common SCHANDS  Science teaching: hands-on activities 0.68 0.80 -8.68
variables  INTSCIE General interest in learning science 0.02 1.16 -12.40

RESPDEV Responsibility for sustainable -0.31 0.88 13.16
Rotation  SCIEEFF écieﬁce selerfﬁcacy 0.21 1.31 30.79
variables  PERSIE Personal value of science 0.29 1.09 -9.02

GENSCIE General value of science 0.15 1.19 16.62
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JOYSCIE Enjoyment of science -0.04 1.03 21.90
SCINTACT  Science teaching: interaction -0.09 1.01 -9.25
PERSIEXJOYSCIE -4.22
Interactions SCHANDSxSCIEEFF 6.75
GENSCIEX RESPDEV -5.25

Designs. The four planned missing data designs are a two-form design, a three-form
design and two optimal incomplete block designs with missing percentages of 50% and 33%
respectively. The design properties (overlap and missing percentage) for each design are
summarized in Table 8. For each design, two of the eight independent variables (SCHANDS and
INTSCIE) are assigned to the common block while the other six variables are assigned to the

rotation blocks. The six rotation variables are planned with missing data.

Table 8. The overlap percentages between two rotation variables and missing percentages of the

four designs in study 2.

Design Overlap Missing
percentage percentage
Two-form design 0% 50%
Three-form design 33%, 339,
Optimal block design-50% 20% 50%
Optimal block design-33%  33% or 50% 33%

Two-form design. In the two-form design, the six rotation variables are split into two
rotation blocks with three variable each, (RESPDEV, SCIEEFF, and PERSCIE in the first block
and GENSCIE, JOYSCIE, and SCIEACT in the second block). Subjects are randomly assigned
to one of the two forms, each containing a common block and one of the rotation blocks. To

create planned missing data, the data of the second rotation block are deleted for subjects who
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get the first rotation block and vice versa. Thus, all the variables in rotation blocks have a
missing percentage of 50% and a pairwise overlap percentage of 0% (but 50% with the variable
of the common block).

Three-form design. In the three-form design, the six variables are first allocated into three
sets with two variables each (RESPDEV and SCIEEFF in set one, PERSCIE and GENSCIE in
set two, JOYSCIE and SCIEACT in set three). Then, three rotation blocks are formed according
to the three possible combinations of two sets. Subjects are randomly assigned to one of the three
forms, each with a common block and one rotation block. To create the planned missing data,
data of the unassigned variable sets are deleted for each subject (e.g., for the first rotation block
that contains variables of the first two sets, the data of the third set are deleted). Thus, all the
variables in rotation blocks have a missing percentage of 33%. The pairwise overlap percentage
of the rotation variable is 33% since any two rotation blocks have one set of variables that
overlaps.

Optimal incomplete block designs. In the optimal incomplete block design with 50%
missingness (each variable in the rotation blocks has 50% missing data), the six variables are
assigned to 10 blocks according to the D-optimal criterion (Atkinson et al., 2007). Each block
contains three variables as shown in Table 9. The overlap percentage of two variables across any
two blocks is 20%. This optimal incomplete block design is a balanced incomplete block design.
Subjects are randomly assigned to one of the ten forms, each with the common block and one
rotation block. To create the planned missing data, data of the unassigned variables are deleted
for each subject.

In the optimal incomplete block design with 33% missingness (each variable in the
rotation blocks contains 33% missing data), the six variables are allocated into six blocks

according to the D-optimal criterion. Each block contains four variables as shown in Table 10.



32

The overlap percentage of two variables across rotation blocks is either 33% or 50% (Table 11).

This optimal block design is also a partially balanced incomplete block design.

Table 9. The variable assignment to ten blocks in the optimal incomplete block design with 50%

missingness.
Block 1 2 3 4 5 6 7 8 9 1
SCHANDS 0 0 0 1 1 1 1 0 0 1
INTSCIE 0 1 0 0 0 1 0 1 1 1
RESPDEV 0 1 1 1 0 0 1 1 0 0
SCIEEFF 1 0 1 0 1 0 0 1 0 1
PERSIE 1 0 1 0 0 1 1 0 1 0
GENSCIE 1 1 0 1 1 0 0 0 1 0

Table 10. The variable assignment to six blocks in the optimal incomplete block design with

33% missingness.

1 2 3 4 5 6
SCHANDS 1 1 0 1 0 1
INTSCIE 1 0 1 1 1 0
RESPDEV 0 1 1 1 0 1
SCIEEFF 1 1 0 1 1 0
PERSIE 0 1 1 0 1 1
GENSCIE 1 0 1 0 1 1

Table 11. The overlap percentage for the optimal incomplete block design with 33%

missingness.
SCHANDS INTSCIE RESPDEV SCIEEFF PERSIE GENSCIE
SCHANDS 67% 33% 50% 50% 33% 33%
INTSCIE  33% 67% 33% 50% 33% 50%
RESPDEV  50% 33% 67% 33% 50% 33%
SCIEEFF  50% 50% 33% 67% 33% 33%
PERSIE 33% 33% 50% 33% 67% 50%
GENSCIE  33% 50% 33% 33% 50% 67%
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Procedures. A random sample of 1000 cases was generated in each iteration. The data
were planned with missingness according to the four designs. The rotation forms were randomly
assigned to subjects. Predictive mean matching was used to impute the planned missing data,
resulting in five complete data sets for each design. The imputation of interactions used just-
another-variable approach (Seaman at al., 2012). Then, a pooled regression analysis using
equation (1) was conducted. Finally, means, pairwise correlations, and regression coefficients
were extracted from the analysis results. This process was replicated 5000 times.

The biases of means, correlations and regression coefficients were computed as the
difference between the average estimates across simulations and the true parameter values. To
assess how reliable the estimates are, the regular 95% confidence intervals for the bias of means
and coefficients were constructed nonparametrically, using the 2.5% and 97.5% quantile of the
estimates across all iterations.

Results

The biases of means, correlations and regression coefficients under each design are
plotted in Figures 7 to 9. Figure 7 and 9 show the standardized bias in means and regression
coefficients and the 95% confidence intervals. The biases in pairwise correlations among the
eight variables of the four designs are shown in Figure 8.

Means. In Figure 7, the means of all the variables are recovered without bias even when
there is no overlap for some pairs of variables in the two-form design. Moreover, the estimated
means are overall more reliable in the optimal block design with 33% missingness, since the
design has a lower missing percentage and stronger overlap (33% and 50%) than the optimal
block design with 50% of missingness.

Correlations. In Figure 8, each dot represents the bias in the correlation between two

variables. The correlation biases in the two-form design are larger than in other designs. In the
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two-form design, five among the 28 correlation biases exceed 0.1 (in absolute values) with the
maximum bias being 0.28. For the three-form design, all absolute correlation biases are within
0.04. For the optimal block designs with 50% and 33% of missingness, absolute biases never
exceed 0.03 and 0.05, respectively.

Regression coefficients. In Figure 9, the biases in regression coefficients of the eight
main effects and three interaction effects are shown. The two-form design again has larger bias
in the estimated regression coefficients. With the same missing percentage (50%), the optimal
block design recovers the coefficients with much less bias due to the 20% overlap. However, the
estimates are less reliable compared to the optimal block design with 33% missingness due to its
larger missing percentage. The three-form design and the optimal block design with 33%
missingness produce similar results. With more overlap and a lower missing percentage, the
interaction terms in these two designs are estimated with less bias compared to the two-form

design and the optimal block design with 50% missingness.
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Figure 7. The biases of estimated means in the four planned missing data designs.
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Figure 8. The biases of estimated correlations in the four planned missing data designs.
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Figure 9. The biases of regression coefficients in the four planned missing data designs.
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Conclusion

Using two simulation studies, this article investigates how the properties of missing data
designs affect the bias of parameter estimates. The first simulation study investigates the bias in
means, correlations and regression coefficients by systematically varying the overlap percentage,
missing percentage, joint distribution of the data and sample size. The results show that the
estimates of means are unbiased for large-scale survey data (i.e., sample sizes exceeding 1000
cases) even when overlap is zero and the missing percentage is high. However, the recovery of
correlations and regression coefficients requires positive overlap. The bias in correlations is
negligibly small when there is 20% or more overlap for continuous data. A low missing
percentage is of minor importance for bias reduction as long as the sample size is large (at least
1000). Regarding the regression coefficients, the bias is negligibly small when overlap exceeds
20% for multivariate normal data. For skewed and categorical data, the coefficients are estimated
with larger bias and less reliability than for multivariate normal data, though with 33% overlap or
higher all biases are still within 0.05 standard deviations of the outcome variable.

The second simulation study compares a two-form design, a three-form design, and two
optimal block designs with 50% and 33% missingness (Table 7). The results show that all
designs recover the means of the eight variables without bias. The biases in correlations are
negligibly small for all designs except for the two-form design which has no overlap across
forms. For the regression coefficients, the two-form design again performs the worst due to no
overlap. With the same amount of missingness, the optimal block design largely reduces the bias
due to its 20% of overlap. Furthermore, the three-form design and the optimal block design
produce negligibly small bias and more reliable estimates due to more overlap and less

missingness.
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To conclude, the choice of the design in a large survey strongly depends on the priority of
the parameter estimates. If researchers are only interested in estimates of populations means, the
two-form design is a good choice since it is simple and easy to implement. If preserving the
correlations or regression coefficient is the main goal, enough overlap should be guaranteed. The
choice of a specific design for creating sufficient overlap between variables depends on the
percentage of items that are administered to respondents compared to the total number of items.
It is advisable to first use a pretest to assess how many questions a respondent can answer
without getting fatigue. Then, an optimal block design can be found to ensure the required
overlap. If the number of items is too large to find an optimal design with sufficient overlap, it is
advisable to reduce the number of items instead of increasing the number of questions
administered to respondents. If hypothesis tests are the main interests, the amount of missingness
should be kept as low as possible in addition to the sufficient overlap. In order to reduce a
design’s missingness percentage, it is better to again restrict the number of items instead of
increasing respondents’ burden.

Implementing a planned missing data design in practice requires many other
considerations. For instance, should the missing data be planned on the item-level or on the
scale-level? On the item-level, items are spread across the blocks or forms without considering
the scales. On the scale-level, items are kept together within scales which are then assigned to
blocks or forms. Studies showed that spreading the items across forms help to lower the standard
error of regression coefficients, given that the procedure of handling the missing data (FIML or
multiple imputation) can sufficiently account for the number of variables (Graham at al., 2006;
Collins et al., 2001). However, in large surveys, imputation is challenging with hundreds of
variables. From the design point of view, if the parameters of interest are on the item-level, the

overlaps among items should be guaranteed. If the parameters of interest are on the scale-level,
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an optimal block design can be found on the scale-level by treating the items within a scale as
one unit.

From the imputation point of view, there are viable ways for solving the problem of
simultaneously imputing too many variables. One solution is to reduce the number of variables
for sequential imputations. That is, imputing groups of variables sequentially. This can be done
in many ways. For example, in large-scale educational assessments, two-stage imputation is
implemented by first imputing the achievement scale scores then using the achievement scores to
impute other background data (authors, 2017; Weirich et al., 2014). One can also sequentially
impute groups of variables that are formed naturally by design (Kaplan & Su, 2016). How to
select variables and in which sequence they should be imputed without harming the recovery of
parameter estimates are the challenges in imputing planned missing data in large surveys, which

need to be addressed in future studies.
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Abstract

Planned missing data designs in large surveys can efficiently reduce respondents’ burden
and lower the cost associated with data collection, without cutting down on the questionnaire
items. Imputing large amounts of planned missing data without harming the validity of causal
parameter estimates is a big challenge. Contrary to the common belief that all auxiliary variables
should be used to impute missing data when the missingness is ignorable, we use graphical
models to illustrate that in some cases including the auxiliary variables is not necessary and in
other cases it causes bias in parameter estimates. We implement simulation studies with different
data distributions to show that whether an auxiliary variable should be included in the imputation
model not only depends on the causal relationship between the auxiliary variable and the
missingness of other variables but also on parameters of interest. Practical implications of

imputing planned missing data are discussed.

Keywords
Graphical models, planned missing data designs, missing data, missing at random, multiple

imputation, imputation model, auxiliary variable
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Introduction

Planned missing data designs in large surveys can efficiently reduce respondents’ burden
and lower the cost associated with data collection, without cutting down on the questionnaire
items. With the advances in the analysis of missing data, methods like multiple imputation
(Rubin, 1987, 1996) allow researchers to analyze data from planned missing data designs
without having to discard incomplete cases. The imputation methods should not interfere with
the researchers’ aim to draw valid descriptive and causal conclusions. Research has shown that
methods such as predictive mean matching (Little, 1988) perform relative well in imputing
planned missing data (Kaplan & Su, 2016, 2018; Su, 2018). One of the challenges in planned
missing data designs of large surveys is to impute large quantities of items or variables. Is it
necessary to use all or many covariates, so-called auxiliary variables, to impute? What’s the
impact of using these variables to impute regarding the validity of causal parameter estimates?

Prior research suggested to include as many auxiliary variables as possible (Schafer,
1997; Collin et al., 2001) when imputing missing data with ignorable missingness mechanism,
namely the inclusive approach. More recently, studies have shown with several examples that
including all variables in the imputation model can bias the causal parameter estimates
(Thoemmes & Rose, 2014; Thoemmes & Mohan, 2015). Correctly specified imputation models
not only guarantee unbiased parameter estimates but also reduce the number of unnecessary
auxiliary variables and thus model complexity. How to identify such imputation models without
harming the validity of parameter estimates, especially if the interest is in causal parameters?
The theory of graphical models for missing data (m-graphs) has been laid out by Mohan et al.
(2013), Mohan & Pearl (2014), and Pearl & Mohan (2013). This paper uses graphical models to
discuss the auxiliary variables that are required or unnecessary for imputing planned missing

data. This paper shows that contrary to the common belief that all auxiliary variables should be
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used to impute missing data when the missingness is ignorable, in some situations including the
auxiliary variables will cause bias. To be more specific, we lay out three typical cases to show
when the auxiliary variable is not necessary or should not be used to recover unbiased parameter
estimates when the missingness is ignorable. The three cases are when including the auxiliary
variable is not necessary to obtain unbiased parameter estimates, when it is only necessary for
some parameter estimates, and when it biases all parameter estimates. Furthermore, in order to
find out how well the theory works in practice, simulations are implemented under the finite
sample size and varied data distributions to examine the bias in means, correlations and
regression coefficients.

Based on the theory of graphical models, for planned missing data designs we found that
the inclusion of a fully observed variable in the imputation model strongly depends on the causal
relationship between this variable and the missingness of other variables. The decision also
differs for means, correlations and regression coefficients. The illustrated three typical scenarios
in a planned missing data design guide practice to select imputation variables given parameters
of interest. Based on the simulations, we found additional bias in parameter estimates can also be
introduced by the limited number of imputations or an inadequate method for imputing
categorical variables. The paper is organized as following. We first briefly discuss the standard
missing at random (MAR) definition (Rubin, 1976) in relation to the graphical representation.
Then we introduce the theory of identification of casual parameters using graphical models under
the context of missing data. Followed by the introduction of missingess mechanisms using
graphs, we illustrate with graphs the three typical cases in planned missing data designs. For
each case we show and discuss simulation results. Finally, the practical implications of the
suggested three cases are discussed with regard to planned missing data designs.

Standard Missing at Random in relation to Graphical Representation
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The missingness in a planned missing data design needs to be ignorable when applying
multiple imputation. However, the standard definition of MAR appears to be difficult to interpret
in practice. There are a few versions of interpretations in the literature (Raghunathan, 2016;
Enders, 2010; Schafer & Graham, 2002; Thomas & Mohan 2013). Some authors use Yobs for the
observed part of data in ¥, and Yumis for the missing part of data in Y. The question is that at which
level does the “missing part” refer to. Does it refer to the missing values in Y or any of the
variables that contain missing data in a data matrix ¥? In the standard definition of MAR, it is
hard to distinguish if the missingness refers to the occurrence at the event-level or the random-
variable-level. Tian (2015) made a distinction between these two levels using graphs. Tian
defined variable-level MAR (notated as MAR*) and event-level MAR (notated as MAR"). The
original MAR assumption (Rubin, 1976) guarantees that likelihood-based inference can be
performed while ignoring the missing mechanism. But from a modeling point of view, it is more
natural to work with variable-level independencies. In addition, in many articles that work with
variable-level independencies, another confusion arises when coming to determine which
variables are referred to as MAR. Do we refer to the variable with missing data locally or do we
refer to all the variables in a whole data set? Tian defined Local MAR in which one can identify
MAR for each variable separately. Tian also defined G-MAR to identify the MAR condition for
all variables in a graph.

For a planned missing data design, it is natural to consider the variable-level when
assigning variables into blocks (e.g., in incomplete block designs or the three-form design). In
the imputation stage, the approach for multiple imputation also automatically works at the
variable-level. For example, the R package mice (van Buuren & Groothuis-Oudshoorn, 2010)
uses the fully conditional specification approach (van Buuren, 2007) which specifies the

multivariate model by a series of conditional models for each incomplete variable. When
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imputing planned missing data in large surveys, due to large amounts of variables, considering
the missing mechanism for each variable (locally) helps to determine the imputation model case
by case. Thus we refer to the planned missingness at the variable-level locally in the following

discussion.

Graphical Representation of Missing Data

The graphs that we are going to use are also referred to as directed acyclic graphs
(DAGsS), or in the context of missing data, m-graphs (Mohan et al., 2013). The arrows in the
graphs do not imply linearity but functional relationships with unknown form. The nodes in the
graphs can represent fully observed, partially observed variables, unobserved variables or
missingness indicators. Observed variables are often with error terms that represent other
unobserved disturbance that have direct effects on this variable. The error terms notated as letter
¢ are omitted for simplicity. In m-graph, the nodes labeled R represent the causal mechanism that
is responsible for missingness. For example, in planned missing data designs the missing
indicator R is mainly caused by the blocking variable B. The m-graphs can be regarded as the
data-generating mechanisms for any variables in the planned missing data designs, where the
values of each variables are determined by the values of the variables that have direct arrows

pointing into this variable.

Identification of Causal Parameters
In order to identify the causal effect, we rely on the d-separation criterion (Pearl, 2009)
which determines whether two variables in a graph are statistically independent of each other

conditional on a set of other variables. We only discuss the conditioning approach for
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identification of the causal effect, although other approaches are available, for example, the
instrumental variable approach (Angrist et al., 1996; Steiner et al. 2015). In order to illustrate the
conditioning approach with graphs, we slightly modify the m-graphs that are used in Thoemmes
and Mohan (2015). We use solid rectangles around the variable to indicate that a variable has
been conditioned on.

For identifying the causal effect of X on Y, we would first need to find all the paths that
connect X and Y through directed or bi-directed arrows. We can identify the causal effect
between X and Y, when conditioning on a set of variables that block the back-door paths. The
name back-door echoes conditioning, indicating that the paths with arrows pointing at X should
be blocked; these paths can be viewed as entering X through the back door (Pearl, 2009). There
are many possibilities how X and Y are connected. We summarize three typical scenarios. The
first scenario is that X and Y are connected via a common cause variable Z, e.g., X < Z — Y.
Conditioning on Z blocks the path from X to Y. The second scenario is that X and Y are connected

via a mediator M, e.g., X - M — Y. Conditioning on M blocks this path from X to Y. The third

scenario is that X and Y are blocked due to a collider C, e.g., X — C <« Y. But conditioning on
the collider will create a spurious association between X and Y, thus, opens the path.
Recoverability. Recoverability refers to the identification of causal effects in m-graphs.
What recoverability means is that if the data are generated by any process compatible with a
graph, a procedure exists that computes an estimator for the parameter of interest such that, in the
limit of large samples, it converges to a bias-free estimate of the parameter. This procedure is
called a “consistent estimator.” Recoverability is the sole property of the graph and the causal
relationships between the variables, not of the data available, or of any routine chosen to analyze
or process the data (Mohan et al., 2013). One should be aware that recoverability is only related

to identification not estimation. In other words, even if a causal parameter is recoverable with
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regard to a specific graph, it does not automatically imply that the parameter is estimable without
bias from finite data. In particular, conditioning on variables that induce bias, like collider
variables, may result in biased parameter estimates.

Recovering Means. Thoemmes and Mohan (2015) illustrated the graphical criteria for
recovering means and regression coefficients. To summarize, suppose variable Y contains
missing data with its missing indicator denoted by Ry, the mean of Y can be recovered if there
exists a set of fully observed variables # (which can be treated as auxiliary variables) such that
the following conditional independence holds:

Y L Ry|W (5)

Recovering Regression Coefficients. If we are interested in recovering the regression
coefficient of ¥ on X. Both variables contain missing data and the missing indicators are Ry and
Ryx. In order to recover the regression coefficient, ¥ has to be d-separated from Ry and Ry,

conditional on X and a set of fully observed variables W (equation 6):
Y L {Ry,Rx} | X W (6)
For more complicated cases, namely when W is not fully observed, additional conditional

independence between ¥ and the missingness indicators is required, that is W_L {Rw, Rx} | X. For

theoretical proofs, readers can refer to Mohan et al. (2013) regarding ordered factorization. This
paper only discusses cases with fully observed .

Recovering Correlations. Thoemmes and Mohan (2015) did not discuss the criteria for
identifying the correlation between X and Y. From the overlap assumption we discussed earlier
we know that in order to recover the correlation between X and Y, we need to have observations

on both X and Y. In addition, the correlation of X and Y is computed as the standardized
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regression coefficient using the variance of X and the variance of Y. Thus in order to recover the
correlation between X and Y, conditional independency in equation (6) needs to hold as well.
Missing Data Mechanism

Here we illustrate the identification of means and regression coefficients using simple
illustrative examples. These examples also present different missingness mechanisms. Suppose
we have two variables X and Y, and we are interested in recovering the mean of Y and the
regression coefficient of ¥ on X. X is fully observed. We use a direct arrow pointing from Xto ¥
to present the direct causal effect from X to Y. We use Y™ to represent the realized data of Y. We
can think of Y as the variable with complete data in theory and Y as the variable with missing
values in practice. We can also call Y* a proxy variable of Y. Thus, the observed data in Y" are
directly obtained from Y, and we draw a directed arrow from Y to Y*. The missing data in Y are
determined by the missingness indicator Ry which takes on values of 0 and 1. If Ry is 0, Y"is
missing; if Ry is 1, Y" takes the value of Y. Thus Y™ is caused not only by Y but also Ry. We draw
a directed arrow from Ry to Y*. Graph 1 is the causal graph that presents the data generating
mechanism of X, ¥, Y" and Ry.

MCAR. The graph in Figure 1 shows the missing data in Y are missing completely at
random. In this case, the missing values in Y* are completely determined by Ry (which itself is
completely determined by a random error term which is not shown in the graph). The
missingness Ry is due to a random procedure which is independent of Y. From a graphical point
of view, Y and Ryare d-separated because the only path connecting Y and Ryis naturally blocked
by collider Y*. Thus, without conditioning on any other variables the unconditional independency

Ry L Yholds. Based on the graphical criterion, the mean of Y is recoverable. The regression

coefficient of ¥ on X can be also recovered, because Ry L Y.
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The data generating mechanism that is encoded in this graph may represent a random
attrition problem in a randomized experiment. X is the treatment or control condition, Y is the
outcome and Y~ contain missing data due to random attrition of respondents. This graph implies
that there are no confounders between the treatment and outcome, which is guaranteed by
randomization. Respondents drop out from the experiment according to an independent random
process. That means the attrition rates are the same for treatment and control group, and are not

affected by respondents’ characteristics or the experiment itself.

Figure 1. The graph of X and Y where Y is missing completely at random.

X Y Y

T

Ry
MAR. The graphs in figure 2 shows that the missing data in Y are missing at random. It

has an additional causal path from X to Ry. In this case, the missingness indicator Ry is not only
caused by some independent random process (which is not explicitly shown in the graph) but
also by the fully observed variable X. Y and Ry are no longer d-separated unless one conditions
on X, since Y is connected with Ry via X. We draw a solid rectangular box around X to indicate
that the back-door path Y <— X — Ry is blocked after conditioning on X. Based on the graphical
criterion, the mean of ¥ and regression coefficient of ¥ on X are recoverable conditional on X,

because Ry L Y| X.

This graph can represent the data generating mechanism of a randomized experiment
with attrition that is affected by the treatment. For example, if the treatment is a medication for
curing a disease, the patients who are assigned to the treatment show strong side effect and they

drop out from the study. The attrition rate in the treatment group is thus much higher than in the
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control group. But within the treatment group or control group, the patients drop out randomly.

The graph also implies that the reason for patients’ attrition is due to some independent random

process and the treatment, not other variables such as the characteristics of patients.

Figure 2. The graph of X and Y where Y is missing at random.

X Y Y X Y Y
Ry Ry

MNAR. The graph in Figure 3 shows that the missing data in Y are missing not at
random. The missingness indicator Ry is directly caused by Y. Y and Ry are no longer d-
separated. Conditioning cannot help us to block the path between Y and Ry because there is no
observed variable between the two variables on which we could condition. Thus, based on the
graphical criterion, the mean of Y and regression coefficient of ¥ on X are not recoverable.

An example for this graph would be a situation where respondents refuse to provide their
outcomes because the outcome itself. For example, let X be a randomly assigned math training
program and Y a math achievement score collected in a survey. If at the end, students who
obtained lower math scores more likely refuse to reveal their scores, the missing data are directly
caused by the outcome. This graph also implies that the missingness does not depend on the
treatment status, that is, whether students choose to reveal their scores does not depend on the

program assigned.
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Figure 3. The graph of X and Y where Y is missing not at random.

X Y

Hhﬂ

Graphical Representation of Planned Missing Data

In planned missing data designs, an item (also referred to as variable) is an individual
task that is administered to a respondent. A block is a set of items that are blocked by design. A
block of variables such as demographic information that contains no planned missing data is
called a common block. Blocks with planned missing data are called rotation blocks. The
variables that are assigned to rotation blocks are referred to as rotation variables. A form is the
actual set of blocks that is administered to examinees. A form can contain either multiple blocks
or only one block. Typically, a form contains a common block and at least one rotation block.
The missing percentage of a single variable is the percentage of missing cases in this variable.
The overlap percentage of two variables is the percentage of simultaneously observed values in
the two variables (relative to total number of cases). If the overlap percentage of two variables is
0%, correlations cannot be recovered. We now focus on the causal relationships among the two
rotation variables X; and X>, and one variable X3 from the common block. The two rotation
variables X1 and X2 can come from any two different rotation blocks. This implies that cases with
missing values in X7 are different from cases with missing values in X2. But X1 and X2 have
common observed cases (positive overlap). X3 contains no missing data.

Cases 1-3 (Figures 4-7) represent the causal relationships among Xi, X, X3, and Yin a

planned missing data design. Y is the outcome variable that does not contain any missing data. X1
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and X> are planned with missing data through the block indictor B which generates the
missingness indicators Ry; and Ry.. Xi"and X>" are the realized data of X; and X>. They take on
the values of X1 and X> when R,; and Ry indicate that the data are observed, and have missing
data (i.e., NAs) when R,; and R, indicate the data are missing. In all graphs, both X1 and X>
cause Y. We use PISA data as the example. Y is the math proficiency score, X3 is the motivation
of learning math that is measured for all students, thus it is in the common block. X1 and X; are
variables from two different questionnaire forms, for example, X1 is the math self-efficacy
measure from rotation block one and X> is the number of hours of studying from rotation form
two. We are interested in recovering the means of X1 and X, the partial regression coefficients of
Y on X1 and X, and the correlations between each pair of variables. We will show that the
conditions for recovering the parameters differ as the causal relationships among X3, X1, and X>

changes.

Case 1

Figure 4 shows the causal relationships among X1, X2, X3, and Y in a planned missing data
design where X3 is a common cause of X1 and X>. With the PISA data example, motivation of
learning (X3) not only causes math self-efficacy (X1) but also study hours (X>).

The missingness mechanism of X and X2 is missing completely at random (Figure 4),
because X1 is d-separated from R,;, and X> is d-separated from Ry as well without conditioning
on other variables, meaning Ry; L Xi and R.> L X>. Given this unconditional independence, the
means of X1 and Xz are recoverable. Moreover, the partial regression coefficients of X1 and X are

also recoverable because R,; L Y| X1, Re> L Y| Xa. Then the pair-wise correlations between
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variables are recoverable as well, as long as we have overlap between each pair of variables.
Since Y and X3 are fully observed we have overlap between Y and Xi, ¥ and X2, X1 and X3, and X>
and Xz. In order to recover the correlation between X; and X, we should make sure that there is

sufficient overlap between X1 and X> when planning the missing data.

Figure 4. The graphs of case 1: Planned missing data design for X1, X2, X3 and Y when X3 is a

common cause between Xi and Xa.
Rx—> X" <—Xi Y
<
Ro—>X'<— X Xz
Case 2
Figure 5 shows the causal relationships among X1, X2, X3, and Y in a planned missing data
design where X3 is a common cause of X and its missingness R.>. With the PISA data example,
motivation of learning math (X3) directly causes study hours (X>). In addition to the planned
missing data in study hours (X2), motivation of learning math (X3) causes other missing data in
study hours (X2). This can be the case that when students have low motivation of learning math,
they tend to not report their study hours.
The missingness mechanism of X2 is missing at random. In order to d-separate Xz and Ry,
we need to condition on X3 so that the back-door path R,> <— X3 — X3 is blocked. We draw a

solid rectangle to indicate the conditioning approach. The mean of X is recoverable once we

condition on X3, because Ry> L X | X3. The partial regression coefficient of X, is recoverable

without conditioning on X3, because R.> L Y| X2. Then the pair-wise correlations between

variables are recoverable as well, as long as we have overlap between each pair of variables.
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Figure 5. The graphs of case 2: Planned missing data design for X1, X2, X3 and Y when X3 is a

common cause between Rx2 and X2.
Rxy—> X" <—Xi Y Ry —> X" <— X1 Y
B B <
R —> X" <— X> Ro—>X"<— X

N e

Case 3

Figure 6 shows the causal relationships among X1, X2, X3, and Y in a planned missing data
design where X3 is a common descendent of X2 and its missingness Rx2. X2 causes X3, and the
missingness R, also causes X3. Thus Xj is a collider between X2 and R... The direct causal path
between R,z and X3 implies that how the missing data planned in X> or how the missing data are
planned in the rotation block where X2 locates directly cause the response values in X3. For
example, the rotation block where the variable study hours (X2) locates might create a context
that causes some students to mis-report their motivations of learning math (X3). The missingness
in X2 is planned as the same way as the other items in this rotation block. When students answer
the question on study hours, they also need to answer the other questions in this block. If all the
items in this rotation block mainly measure how much time or energy students devote to learn
math, the context that is created by this specific group of items can affect the answers of
following questions. In other words, being exposed to the question on study hours might results
in a different response when answering the question on motivation of learning math.

The missingness mechanism of X1 and X2 is missing completely at random. Because X3 is

a collider that naturally blocks the path R.> — X3 <— X2. Thus the unconditional independence
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assumption, R,> L X5 holds. Based on the inclusive approach for imputing missing data (Collins
et al., 2001; Schafer, 1997), X is suggested to be included in the imputation model to help
impute the missing data in X>. However, we argue that including X3 for imputing the missing data
in X> will induce bias not only in mean of X>, but also the partial regression coefficients of Xa.
We draw a solid rectangular to indicate the conditioning approach (Figure 6).
Conditioning on collider X3, it opens the collider path R.> — X3 «— X>. Thus X2 and Ry are no
longer d-separated. This is because conditioning on the collider introduces the spurious
association between X> and Ry (as indicated with the dashed line between R, and X>). This
spurious association is responsible for collider bias in parameter estimates. Without conditioning
on X3, the mean of X is recoverable, since the unconditional independence holds, R.> L X>. The
partial regression coefficient of X> is also recoverable, since conditional independence holds Ry
1 Y| X>. However, once we condition on X3, the mean of X> will be biased, because a spurious
association is introduced which d-connects R.> and X>. The partial regression coefficient of X>

will also be biased, because Ry> and Y are d-connected via the spurious association.

Figure 6. The graphs of case 3: Planned missing data design for X1, X2, X3 and Y when X3 is a

collider between X; and X5.

Rx; X Xi Y Rx; X Xi Y
o T
Ro—>Xo"<—X> l * l
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Simulation Studies

We implement simulation studies to investigate the three cases illustrated above. They
are when including the auxiliary variable is not necessary to obtain unbiased parameter estimates
(case 1), when it is only necessary for some parameter estimates (case 2), and when it biases all
parameter estimates (case 3).

Data

We create X1, X2, X3, and Y according to the graphs (Figure 4-7). The structural equations
of all variables are in simple linear parametric forms. The population means, variances, and
weights that are used to create the linear functional forms of X1, X2, X3, and Y are chosen with
reference to the PISA 2006 U.S. data (OECD, 2006). The true values of means and variances of
X1, X2 and X, pairwise correlations among X1, X2, X3 and Y, and regression coefficients of ¥ on
X1 and X are listed in Table 1-3 for each case.

The distributions of X, X> and X3 are varied as multivariate normal distributions, skewed
continuous distributions, and categorical distributions. To generate skewed continuous
distributions, we log-transform the normally distributed variables X1, X2 and X3. To generate the
categorical variables, we choose cut-off points to transform X1, X2 and X3 into binary variables.

In order to plan missing data in X1 and X2, the block indicator B is created as a three-level
categorical variable. B takes on the values of 1, 2 and 3. When B equals 1, the value of Xi is
missing (accordingly R,; equals 0 and R,; equals 1). When B equals 2, the value of X> is missing
(accordingly R.> equals 0 and Ry; equals 1). When B equals 3, both X1 and X are observed (R.;
and R, are 0). 20% of cases are randomly assigned to block 1, and another 20% are randomly
assigned to block 2, and the rest to block 3. Thus, both X;"and X>" contain 20% of missing data.
The overlap percentage between X and X>" (the ratio between the number of jointly observed

cases and the number of total cases) is 60%.
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The data in Case 2 and 3 (Figure 5 and 6) differ in the following aspects. For Case 2
(Figure 5), in addition to the 20% planned missing data in X>", more missingness in X>" is caused
by X3. We create the additional missingness by choosing a cut-off value of Xz. If X3 is greater
than this value, X>" is missing. To be more specific, for the normally distributed data, if X3 is
greater than 2.5, X>" is missing. For the skewed continuous data, if X3 is greater than 1.8, X" is
missing. This procedure produces 3% to 7% more missing data in X>". The overlap percentages
between X; and X>" are from 53% to 57%. For Case 3 (Figure 6), the values of X3 are altered
according to the missingness of X2. To be more specific, when the data are normal or skewed
continuous distributions, if X>" is missing, X is divided by 10. When the data are categorical
distributions, if X>" is missing, X3 equals 1.

Table 1. Population parameter values of variables in case 1.

Multivariate

Parameters Skewed Categorical
normal
Means
Ux1 0.939 1.687 0.383
Uxo 0.876 1.447 0.381
Uxs 0.798 1.744 0.482
Uy 479.934  484.697 487.698
Variances
0%, 1.568 2.287 0.236
o2, 1.324 2.239 0.236
025 0.893 0.028 0.250
o 772.510  905.920 777.222
Correlations
Px1x2 0.292 0.014 -0.064
Px1x3 0.604 0.086 0.306
Px2x3 0.488 0.069 0.224
Px1y 0.387 0.495 -0173
Pxa2y -0.391 -0.247 -0.597
Dx3y -0.082 -0.024 -0.179
Regression coefficients
Bo (intercept) 475.090 475.346 503.551
B (slope of X1) 9.964 9.927 -7.778

B, (slope of X2) -5.149 -5.115 -33.761




Table 2. Population parameter values of variables in case 2.

Parameters Multivariate Skewed Categorical
normal
Means
Ux1 0.503 1.690 0.367
Uz 0.879 1.860 0.390
U3 0.799 1.744 0.290
Uy 475.611 482.622 476.439
Variances
0%, 0.808 0.029 0.232
o2, 1.329 0.006 0.238
024 0.901 0.029 0.206
o 214.033 103.216 543.484
Correlations
Px1ix2 0.001 0.002 -0.002
Px1x3 -0.003 0.001 -0.005
Px2x3 0.491 0.208 0.142
Px1iy 0.612 0.172 0.416
Px2y -0.391 -0.040 -0.308
Px3y -0.197 -0.011 -0.042
Regression coefficients
Bo (intercept) 479.967 474.883 474.784
B (slope of X1) 9.967 10.299 20.123
B (slope of X2) -4.974 -5.197 -14.700

Table 3. Population parameter values of variables in case 3.

Parameters Multivariate Skewed Categorical
normal
Means
Ux1 0.300 1.647 0.252
Uxo 0.600 1.708 0.335
Uxs -0.941 1.621 0.511
Uy 475.060 482.928 475.824
Variances
0%, 1.098 0.044 0.188
o2, 0.894 0.031 0.223
024 0.019 0.042 0.250
o7 1016.982 401.432 41.657

Correlations
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Px1x2 0.303 0.597 0.392

Px1x3 0.212 0.007 0.022

Px2x3 0.686 0.024 0.042

Px1y 0.289 0.077 0.533

Px2y -0.050 0.021 -0.104

Px3y -0.035 0.005 -0.011
Regression coefficients

Bo (intercept) 475.056  474.696 474975

B (slope of X1) 10.177 9.553 10.072

B (slope of X2) -5.094 -4.393 -5.059
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Procedures

We generated the population data of 50000 cases. Then we drew a random sample of
1000 cases in each iteration. To plan the missing data in the sampled data, missing values in
Xi*and X>" were set according to the block indicator B. After creating the planned missing data,
we used predictive mean matching to impute the missing data five times, resulting in five
complete data sets. Two imputation models were chosen, one which includes X3 as an auxiliary
variable to impute X;"and X>" and the other one without X3. We conducted regression analysis by
regressing Y on X7 and X>. Results were pooled over the five data sets. The marginal means,
pairwise correlations and regression coefficients were extracted from the analysis results. This
process was replicated for 5000 times. Finally, the biases of means, correlations and regression
coefficients were computed as the difference between the average estimates across simulations
and the population parameter values. For the estimates of means and regression coefficients,
95% simulation confidence intervals were constructed as well. The standard errors used for the
95% simulation confidence interval were calculated as the standard deviation of the coefficients

across simulations divided by the square root of the number of iterations.

Results
Case 1
Means. Table 4 presents the biases and 95% simulation confidence intervals of estimated
means of X1 and X2, with and without including X3 in the imputation model. For all types of data
distributions, the means of X1 and X> are estimated without bias regardless of including X3 in the
imputation model or not. Given the unconditional independence, results show that, the means of

X1 and X are recoverable and estimated without bias. This implies that if researchers are



interested in the unbiased means of X; and X>, when Xz is a confounder between X; and X2, X3 is

not required in the imputation.

Table 4. The biases and 95% simulation confidence intervals of estimated means of X; and X> in
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case 1.
Model  Parameter Normal Skew Categorical
Mean Bias CIL CIH Bias CIL CIH Bias CIL CIH
With X1 0.000 -0.001 0.001 -0.001 -0.002 0.001 0.000 -0.001 0.000
X3 X2 0.000 -0.001 0.001 0.001 -0.001 0.002 0.000 -0.001 0.000
Without X1 0.000 -0.001 0.001 0.000 -0.002 0.001 0.000 0.000 0.001
X3 X2 0.000 -0.002 0.001 0.000 -0.001 0.002 0.000 0.000 0.001

Regression coefficients. Table 5 presents the biases and 95% simulation confidence

intervals of estimated regression coefficients of X1 and Xz. For all types of data distributions, all

coefficients are estimated without bias regardless of including X3 in the imputation model or not.

Given the unconditional independence, the coefficients of X1 and X> are recoverable and

estimated without bias. Again, X3 is not necessary to be included in the imputation model for

obtaining unbiased regression coefficients.

Table 5. The biases and 95% simulation confidence intervals of estimated partial regression

coefficients of X7 and X5 in case 1.

Model Parameter Normal Skew Categorical

Coef Bias CIL CIH Bias CIL CIH Bias CIL CIH
With X1 -0.012  -0.032 0.009 -0.010 -0.026 0.006 0.006 -0.031 0.063
X3 X2 0.014 -0.010 0.038 0.016 -0.001 0.034 0.031 -0.012 0.073
Witho X1 -0.003 -0.024 0.018 -0.007 -0.023  0.009 0.043 -0.005 0.091
ut X3 X2 0.015 -0.009 0.038 0.004 -0.014 0.021 0.005 -0.038 0.048

Correlations. Table 6 shows the biases of pairwise correlations among X1, X2, X3 and Y.

Without including X3 in the imputation model, the correlations between Xi and X3, and X> and X3
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are biased. This is obvious because without X3 there is no overlap between these two pairs of
variables. In this case if researchers are interested in recovering correlations among all pairs of
variables, X3 has to be included in the imputation model. If the priority is not the correlations that
involve X3, it can be excluded to simplify the imputation model. It will not affect the means and

coefficients of X1 and X> regarding bias.

Table 6. The biases of pairwise correlations among Xi, X>, X3 and Y in case 1.

Model Parameter =~ Normal Skew  Categorical
Cor Bias Bias Bias

With X3 X1X2 -0.001 0.002 0.000
X1X3 -0.001  -0.001 0.000
X2X3 -0.001  -0.001 0.001
X1Y -0.001  -0.001 0.001
X2Y 0.000 0.002 0.001

Without X3  X1X2 0.000  -0.001 0.000
X1X3 -0.075  -0.013 -0.057
X2X3 -0.060  -0.013 -0.024
X1Y -0.001  -0.001 0.001
X2Y 0.001 0.000 0.001

Case 2

Means. Table 7 presents for case 2 the biases and 95% simulation confidence intervals of
estimated means of X; and X2, with and without including X3 in the imputation model. For all
types of data distributions, the means of X2 are estimated with bias when X3 is not used in the
imputation. The size of bias for normally distributed data is larger than the other two
distributions, mainly because the size of correlation between Xz and X3 is much larger.
Conditioning on X3, the means of Xz are recoverable and estimated without bias. When Xj is the
common cause of the missingness in X2 and X itself, X3 should be included in the imputation

model in order to avoid the bias in mean of X5.
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Table 7. The biases and 95% simulation confidence intervals of estimated means of X; and X in

case 2.
Model Par Normal Skew Categorical
Mean Bias CIL CIH Bias CIL CIH Bias CIL CIH
With X1 0.000 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
X3 X2 0.001 -0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.001
Witho X1 0.002  0.001 0.003 0.000 0.000 0.000 -0.001 -0.001 0.000
utX3 X2 -0.037 -0.038 -0.036 -0.001 -0.001 -0.001 -0.007 -0.008 -0.007

Regression coefficients. Table 8 presents the biases and 95% simulation confidence

intervals of estimated partial regression coefficients of X1 and Xz. For all types of data

distributions, all coefficients are estimated without bias except for the case with categorical

distribution. Based on the unconditional independence, the coefficient of Xz are recoverable

without conditioning on X3. The bias that occurred in the case of categorical distribution is

largely due to the inadequacy of imputation method. Nonetheless, the results imply that if

researchers are not interested in means but only in unbiased regression coefficients, including X3

in the imputation is not necessary.

Table 8. The biases and 95% simulation confidence intervals of estimated partial regression

coefficients of X7 and X5 in case 2.

Model Par Normal Skew Categorical

Coef Bias CIL CIH Bias CIL CIH Bias CIL CIH
With X1 0.004 -0.007 0.015 -0.018 -0.077 0.041 -0.025 -0.066 0.016
X3 X2 -0.003  -0.005 0.012 0.085 -0.030 0.200 0.075 0.032 0.118
Witho X1 0.007  -0.004 0.018 -0.030 -0.089 0.030 0.028 -0.014 0.070
ut X3 X2 0.001  -0.007 0.010 0.078 -0.039 0.194 0.009 -0.033  0.052
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Correlations. Table 9 shows the biases of pairwise correlations among X1, X2, X3 and Y.
Without including X3 in the imputation, the correlations between X2 and X3 are biased. The
estimated correlations between Xi and X3 do not show strong bias because the true correlations
between X1 and X3 are very small and almost negligible. In this case, if the means and

correlations are the priorities, X3 should be included in the imputation.

Table 9. Population parameter values of variables in case 2.

Model Parameter =~ Normal Skew  Categorical
Cor Bias Bias Bias

With X3 X1X2 -0.001  -0.001 0.000
X1X3 0.000 0.000 0.000
X2X3 0.000 0.000 0.001
X1Y -0.001  -0.001 -0.001
X2Y 0.000 0.000 0.002

Without X3  X1X2 0.001  -0.001 -0.001
X1X3 0.000 0.001 0.002
X2X3 -0.038  -0.018 -0.045
X1Y -0.001  -0.001 0.000
X2Y 0.002 0.000 0.001

Case 3

Means. Table 10 presents for case 3 the biases and 95% simulation confidence intervals
of estimated means of X1 and X2, with and without including X3 in the imputation model. For all
types of data distributions, the means of Xz are estimated with bias when including X3 in the
imputation. For the multivariate normal distribution, the mean of X] is also slightly biased. This
might be largely due to the uncertainty of imputation. Given that the size of bias in mean of X2 is
much larger and imputing the missing data in X1 needs to borrow the information from X2, the
estimated mean of X7 can be slightly biased with limited sample size and limited number of

imputation. Without X3 in the imputation, the mean of X> is estimated without bias. But after
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including X3, X is estimated with bias due to the collider X3. This implies that to ensure the
unbiased estimates of means of X2, X3 should not be included in the imputation model when X3 is

the collider between X> and its the missingness Ry..

Table 10. The biases and 95% simulation confidence intervals of estimated means of X; and X3

in case 3.
Model  Parameter Normal Skew Categorical
Mean Bias CIL CIH Bias CIL CIH Bias CIL CIH
With X1 -0.004 -0.005 -0.003 0.000 0.000 0.000 0.000 -0.001 0.000
X3 X2 0360 0358 0.362 -0.005 -0.005 -0.005 0.003 0.002 0.003
Without X1 0.000 -0.001 0.001 0.000 0.000 0.000 0.000 -0.001 0.000
X3 X2 0.001 0.000 0.002 0.000 0.000 0.000 0.000 -0.001 0.000

Regression coefficients. Table 11 presents the biases and 95% simulation confidence
intervals of estimated partial regression coefficients of X1 and Xz. For all types of data
distributions, the coefficients of X2 are biased after including X3 in the imputation. The
coefficients of Xz are recoverable and estimated without bias when X3 is excluded from the
imputation. One exception with the categorical distribution is that the partial regression
coefficient of X is biased without X3. This is again somehow expected due to the imputation
method. The interesting finding is that by including X3, the coefficients of X are also strongly
biased. Though based on the theory with infinite large sample size, the coefficients of X1 should

be recovered without bias, given the conditional independence holds, R,; L Y | X1 (Figure 6).

However, including the collider biases the coefficients of Xi. This is largely due to the fact that
X1 and X> are correlated. If the coefficients of X2 are biased, it is not surprising to see the bias in
the coefficients of Xi. The results imply that X3 should not be included in the imputation if the

goal is to obtain unbiased regression coefficients.



72

Table 11. The biases and 95% simulation confidence intervals of estimated partial regression

coefficients of X7 and X5 in case 3.

Model Parameter Normal Skew Categorical

Coef Bias CIL CIH Bias CIL CIH Bias CIL CIH
With X1 -0.931 -0.960 -0.902 -0.204 -0.327 -0.082 -0.051 -0.064 -0.038
X3 X2 2.552 2526 2578 0.287 0.141 0432 0.021 0.009 0.038
Witho X1 -0.025 -0.055 0.006 -0.011 -0.138 0.117 -0.030 -0.043 -0.017
ut X3 X2 0.033 -0.002 0.068 0.068 -0.084 0.219 -0.011 -0.023 0.001

Correlations. Table 12 shows the biases of pairwise correlations among Xi, X2, X3 and Y.
For the continuous variables, without including X3 the correlations between Xi and X3, and X>
and X3 are biased due to the lack of overlap. The size of bias depends on the size of true
correlation values. After including X3 in the imputation, the bias is not improved. Since X3
introduces collider bias, we found additional bias in correlations between X; and X5, X and Y,
and Xz and Y, compared to the bias when excluding X3. For the categorical distribution, the biases
in correlations do not have strong systematic changes. In this final case, regardless including X3
or not, the correlations that involve X3 are biased. But in order to preserve other correlations, X3

should not be included in the imputation.

Table 12. Population parameter values of variables in case 3.

Model Parameter =~ Normal Skew  Categorical
Cor Bias Bias Bias
With X3 X1X2 -0.114  -0.014 0.024

X1X3 -0.151  -0.006 -0.004



X2X3 0.073  -0.035 -0.003
X1Y -0.002  -0.001 -0.013
X2Y 0.017 -0.001 0.016
Without X3 X1X2 -0.002  -0.003 0.026
X1X3 -0.147  -0.005 -0.005
X2X3 -0.476  -0.018 -0.007
X1Y -0.000 0.000 -0.013
X2Y 0.000 0.000 0.016
Conclusion

This paper uses graphical models to investigate the specification of imputation models
regarding obtaining unbiased parameter estimates of planned missing data. Contrary to the
common belief that all auxiliary variables should be used to impute missing data when the
missingness is ignorable, we show that in some cases including the auxiliary variables is not
necessary and in other cases it causes bias in all parameter estimates. Even if the missingness
mechanism is ignorable as frequently the case in planned missing data designs, whether an

auxiliary variable should be included in the imputation model not only depends on the causal
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relationship between the auxiliary variable and the missingness of other variables but also on the

parameters of interest. The illustrated scenarios guide researchers to identify these cases in the

setting of planned missing data designs and decide if the auxiliary variable should be used in the

imputation.

To summarize, the first case shows that when the auxiliary variable is neither a cause nor

a descendant of the missingness of another variable, it is not necessary to be used in the
imputation model to recover unbiased mean and partial regression coefficient of this variable,

unless the interest is on the correlations that involve this auxiliary variable. In the second case,
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when the auxiliary variable is a common cause of a variable X and the missingness of this
variable R, it should be used to recover the mean of X. But it is not necessary for recovering the
partial regression coefficient of X. In the third case, when the auxiliary variable is a common
descendant of X and R,, it should not be used to recover any parameters, because conditioning on
the auxiliary variable introduces collider bias. The cases examined by no means exhaust all
possibilities. For example, future studies can look at cases with planned missing data in auxiliary
variables, or when the outcome variable has missing data, or when the auxiliary variable is a
cause or a descendent of the outcome variable.

There are many challenges in obtaining unbiased causal parameter estimates in planned
missing data designs. First the main challenge is to lay out the graphical model for all variables
based on theory. However, if the causal model is laid out and the priority of parameters of
interest is clear, we can identify if the parameters are recoverable. Second, even if the parameter
estimates are recoverable by theory, it does not ensure that they are estimated without bias.
Correctly specified imputation models have to be guaranteed to obtain unbiased estimates. Third,
given a correctly specified imputation model, imputation methods need to be adequate on dealing
with different types of data distributions and limited sample sizes, especially with categorical
data. Bias can be reduced by increasing the sample size, but will not vanish given a finite sample
since multiple imputation only delivers consistent parameter estimates. Further studies can look
into the imputation procedures and methods that are capable of adapting to each variable case by

case with regard to the search of imputation models.
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